These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 2725692)

  • 21. Frequency Tuning of Hearing in the Beluga Whale.
    Sysueva EV; Nechaev DI; Popov VV; Supin AY
    Adv Exp Med Biol; 2016; 875():1131-8. PubMed ID: 26611077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Application of simultaneous auditory evoked potentials and functional magnetic resonance recordings for examination of central auditory system--preliminary results].
    Milner R; Rusiniak M; Wolak T; Piatkowska-Janko E; Naumczyk P; Bogorodzki P; Senderski A; Ganc M; Skarzyński H
    Otolaryngol Pol; 2011; 65(3):171-83. PubMed ID: 21916216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Living in a "stethoscope": burrow-acoustics promote auditory specializations in subterranean rodents.
    Lange S; Burda H; Wegner RE; Dammann P; Begall S; Kawalika M
    Naturwissenschaften; 2007 Feb; 94(2):134-8. PubMed ID: 17119910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Postnatal development of auditory central evoked responses and thalamic cellular properties.
    Venkataraman Y; Bartlett EL
    Dev Neurobiol; 2014 May; 74(5):541-55. PubMed ID: 24214269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Does enriched acoustic environment in humans abolish chronic tinnitus clinically and electrophysiologically? A double blind placebo controlled study.
    Vanneste S; van Dongen M; De Vree B; Hiseni S; van der Velden E; Strydis C; Joos K; Norena A; Serdijn W; De Ridder D
    Hear Res; 2013 Feb; 296():141-8. PubMed ID: 23104014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The classification of species-specific sound communication signals by rodents in the Gliridae family of dormice].
    Korotetskova LV; Movchan VN
    Nerv Sist; 1990; 29():75-88. PubMed ID: 2084562
    [No Abstract]   [Full Text] [Related]  

  • 27. Noise exposure alters long-term neural firing rates and synchrony in primary auditory and rostral belt cortices following bimodal stimulation.
    Takacs JD; Forrest TJ; Basura GJ
    Hear Res; 2017 Dec; 356():1-15. PubMed ID: 28724501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss.
    Verhulst S; Altoè A; Vasilkov V
    Hear Res; 2018 Mar; 360():55-75. PubMed ID: 29472062
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binaural interaction in the auditory brainstem response: a normative study.
    Van Yper LN; Vermeire K; De Vel EF; Battmer RD; Dhooge IJ
    Clin Neurophysiol; 2015 Apr; 126(4):772-9. PubMed ID: 25240247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.
    Starr A; McPherson D; Patterson J; Don M; Luxford W; Shannon R; Sininger Y; Tonakawa L; Waring M
    Brain; 1991 Jun; 114 ( Pt 3)():1157-80. PubMed ID: 2065245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crossmodal and intermodal attention modulate event-related brain potentials to tactile and auditory stimuli.
    Hötting K; Rösler F; Röder B
    Exp Brain Res; 2003 Jan; 148(1):26-37. PubMed ID: 12478394
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of broadband noise on cortical evoked auditory responses at different loudness levels in young adults.
    Sharma M; Purdy SC; Munro KJ; Sawaya K; Peter V
    Neuroreport; 2014 Mar; 25(5):312-9. PubMed ID: 24323122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaural intensity and latency difference in the dolphin's auditory system.
    Popov VV; Supin AYa
    Neurosci Lett; 1991 Dec; 133(2):295-7. PubMed ID: 1816509
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Auditory processing that leads to conscious perception: a unique window to central auditory processing opened by the mismatch negativity and related responses.
    Näätänen R; Kujala T; Winkler I
    Psychophysiology; 2011 Jan; 48(1):4-22. PubMed ID: 20880261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rodent hearing: apparatus for behavioral measurements with ultrasounds.
    Francis RL
    Physiol Behav; 1979 Jul; 23(1):215-7. PubMed ID: 515213
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Auditory-evoked potentials in general anesthesia monitoring: baseline study of availability in relation to hearing function in awake status.
    De Siena L; Pallavicino F; Lacilla M; Canale A; Longobardo A; Pecorari G; Albera R
    Acta Anaesthesiol Scand; 2005 Jul; 49(6):774-7. PubMed ID: 15954958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Auditory brainstem and cortical potentials following bone-anchored hearing aid stimulation.
    Rahne T; Ehelebe T; Rasinski C; Götze G
    J Neurosci Methods; 2010 Nov; 193(2):300-6. PubMed ID: 20875458
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of center frequency on binaural auditory filter bandwidth in the human brain.
    Soeta Y; Shimokura R; Nakagawa S
    Neuroreport; 2008 Nov; 19(17):1709-13. PubMed ID: 18841088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Speech-evoked auditory brainstem responses in children with hearing loss.
    Koravand A; Al Osman R; Rivest V; Poulin C
    Int J Pediatr Otorhinolaryngol; 2017 Aug; 99():24-29. PubMed ID: 28688560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Delayed changes in auditory status in cochlear implant users with preserved acoustic hearing.
    Scheperle RA; Tejani VD; Omtvedt JK; Brown CJ; Abbas PJ; Hansen MR; Gantz BJ; Oleson JJ; Ozanne MV
    Hear Res; 2017 Jul; 350():45-57. PubMed ID: 28432874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.