BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27257034)

  • 1. Effect of chromatic filters on visual performance in individuals with mild traumatic brain injury (mTBI): A pilot study.
    Fimreite V; Willeford KT; Ciuffreda KJ
    J Optom; 2016; 9(4):231-9. PubMed ID: 27257034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of spectral filters on VEP and alpha-wave responses.
    Willeford KT; Fimreite V; Ciuffreda KJ
    J Optom; 2016; 9(2):110-7. PubMed ID: 26293969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of binasal occlusion (BNO) and base-in prisms on the visual-evoked potential (VEP) in mild traumatic brain injury (mTBI).
    Yadav NK; Ciuffreda KJ
    Brain Inj; 2014; 28(12):1568-80. PubMed ID: 25058498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of luminance on the visually-evoked potential in visually-normal individuals and in mTBI/concussion.
    Fimreite V; Ciuffreda KJ; Yadav NK
    Brain Inj; 2015 Sep; 29(10):1199-1210. PubMed ID: 26083046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of binasal occlusion (BNO) on the visual-evoked potential (VEP) in mild traumatic brain injury (mTBI).
    Ciuffreda KJ; Yadav NK; Ludlam DP
    Brain Inj; 2013; 27(1):41-7. PubMed ID: 22900490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of the pattern visual evoked potential (VEP) in the visually-normal and mild traumatic brain injury (mTBI) populations.
    Yadav NK; Ciuffreda KJ
    Brain Inj; 2013; 27(13-14):1631-42. PubMed ID: 24111626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual dysfunctions and symptoms during the subacute stage of blast-induced mild traumatic brain injury.
    Capó-Aponte JE; Urosevich TG; Temme LA; Tarbett AK; Sanghera NK
    Mil Med; 2012 Jul; 177(7):804-13. PubMed ID: 22808887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of oculomotor vision rehabilitation on the visual-evoked potential and visual attention in mild traumatic brain injury.
    Yadav NK; Thiagarajan P; Ciuffreda KJ
    Brain Inj; 2014; 28(7):922-9. PubMed ID: 24564831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Objective assessment of visual attention in mild traumatic brain injury (mTBI) using visual-evoked potentials (VEP).
    Yadav NK; Ciuffreda KJ
    Brain Inj; 2015; 29(3):352-65. PubMed ID: 25415539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of spectacle treatment in patients with mild traumatic brain injury: a pilot study.
    Johansson J; Nygren de Boussard C; Öqvist Seimyr G; Pansell T
    Clin Exp Optom; 2017 May; 100(3):234-242. PubMed ID: 27624444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the cognitive consequences of mild traumatic brain injury and concussion by using electrophysiology.
    Gosselin N; Bottari C; Chen JK; Huntgeburth SC; De Beaumont L; Petrides M; Cheung B; Ptito A
    Neurosurg Focus; 2012 Dec; 33(6):E7: 1-7. PubMed ID: 23199430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Longitudinal changes in oculomotor function in young adults with mild traumatic brain injury in Sweden: an exploratory prospective observational study.
    Matuseviciene G; Johansson J; Möller M; Godbolt AK; Pansell T; Deboussard CN
    BMJ Open; 2018 Feb; 8(2):e018734. PubMed ID: 29431132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual Dysfunction and Associated Co-morbidities as Predictors of Mild Traumatic Brain Injury Seen Among Veterans in Non-VA Facilities: Implications for Clinical Practice.
    Urosevich TG; Boscarino JJ; Hoffman SN; Kirchner HL; Figley CR; Adams RE; Withey CA; Boscarino JA
    Mil Med; 2018 Nov; 183(11-12):e564-e570. PubMed ID: 29800265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of mild traumatic brain injury on reading comprehension and eye movements: preliminary results.
    Ratiu I; Fissel-Brannick S; Whiting M; Murnion L; Azuma T
    J Commun Disord; 2022; 96():106197. PubMed ID: 35151226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of neuro-optometric rehabilitation using the Developmental Eye Movement (DEM) test in adults with acquired brain injury.
    Kapoor N; Ciuffreda KJ
    J Optom; 2018; 11(2):103-112. PubMed ID: 28676352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of colored filters in patients post-traumatic brain injury: A review.
    Bansal S; Green K
    NeuroRehabilitation; 2022; 50(3):321-330. PubMed ID: 35342057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oculomotor neurorehabilitation for reading in mild traumatic brain injury (mTBI): an integrative approach.
    Thiagarajan P; Ciuffreda KJ; Capo-Aponte JE; Ludlam DP; Kapoor N
    NeuroRehabilitation; 2014; 34(1):129-46. PubMed ID: 24284470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuropsychological alterations and neuroradiological findings in patients with post-traumatic concussion: Results of a pilot study.
    Rădoi A; Poca MA; Cañas V; Cevallos JM; Membrado L; Saavedra MC; Vidal M; Martínez-Ricarte F; Sahuquillo J
    Neurologia (Engl Ed); 2018 Sep; 33(7):427-437. PubMed ID: 28007313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Magnetic Resonance Imaging and Oculomotor Dysfunction in Mild Traumatic Brain Injury.
    Rockswold SB; Burton PC; Chang A; McNally N; Grant A; Rockswold GL; Low WC; Eberly LE; Yacoub E; Lenglet C
    J Neurotrauma; 2019 Apr; 36(7):1099-1105. PubMed ID: 30014758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GPR110 ligands reduce chronic optic tract gliosis and visual deficit following repetitive mild traumatic brain injury in mice.
    Chen H; Kevala K; Aflaki E; Marugan J; Kim HY
    J Neuroinflammation; 2021 Jul; 18(1):157. PubMed ID: 34273979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.