BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

497 related articles for article (PubMed ID: 27257076)

  • 21. Chromosome breaks generated by low doses of ionizing radiation in G
    Soni A; Murmann-Konda T; Siemann-Loekes M; Pantelias GE; Iliakis G
    DNA Repair (Amst); 2020 May; 89():102828. PubMed ID: 32143127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-homologous end-joining for repairing I-SceI-induced DNA double strand breaks in human cells.
    Honma M; Sakuraba M; Koizumi T; Takashima Y; Sakamoto H; Hayashi M
    DNA Repair (Amst); 2007 Jun; 6(6):781-8. PubMed ID: 17296333
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The absence of Ku but not defects in classical non-homologous end-joining is required to trigger PARP1-dependent end-joining.
    Mansour WY; Borgmann K; Petersen C; Dikomey E; Dahm-Daphi J
    DNA Repair (Amst); 2013 Dec; 12(12):1134-42. PubMed ID: 24210699
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair.
    Xie A; Hartlerode A; Stucki M; Odate S; Puget N; Kwok A; Nagaraju G; Yan C; Alt FW; Chen J; Jackson SP; Scully R
    Mol Cell; 2007 Dec; 28(6):1045-57. PubMed ID: 18158901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DSB (Im)mobility and DNA repair compartmentalization in mammalian cells.
    Lemaître C; Soutoglou E
    J Mol Biol; 2015 Feb; 427(3):652-8. PubMed ID: 25463437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PREVENTING THE CHROMOSOMAL TRANSLOCATIONS THAT CAUSE CANCER.
    Hromas R; Williamson E; Lee SH; Nickoloff J
    Trans Am Clin Climatol Assoc; 2016; 127():176-195. PubMed ID: 28066052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. LC8/DYNLL1 is a 53BP1 effector and regulates checkpoint activation.
    West KL; Kelliher JL; Xu Z; An L; Reed MR; Eoff RL; Wang J; Huen MSY; Leung JWC
    Nucleic Acids Res; 2019 Jul; 47(12):6236-6249. PubMed ID: 30982887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitation and analysis of the formation of HO-endonuclease stimulated chromosomal translocations by single-strand annealing in Saccharomyces cerevisiae.
    Liddell L; Manthey G; Pannunzio N; Bailis A
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21968396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CHD7 and 53BP1 regulate distinct pathways for the re-ligation of DNA double-strand breaks.
    Rother MB; Pellegrino S; Smith R; Gatti M; Meisenberg C; Wiegant WW; Luijsterburg MS; Imhof R; Downs JA; Vertegaal ACO; Huet S; Altmeyer M; van Attikum H
    Nat Commun; 2020 Nov; 11(1):5775. PubMed ID: 33188175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strong suppression of gene conversion with increasing DNA double-strand break load delimited by 53BP1 and RAD52.
    Mladenov E; Staudt C; Soni A; Murmann-Konda T; Siemann-Loekes M; Iliakis G
    Nucleic Acids Res; 2020 Feb; 48(4):1905-1924. PubMed ID: 31832684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. IgH class switching exploits a general property of two DNA breaks to be joined in cis over long chromosomal distances.
    Gostissa M; Schwer B; Chang A; Dong J; Meyers RM; Marecki GT; Choi VW; Chiarle R; Zarrin AA; Alt FW
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):2644-9. PubMed ID: 24550291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Limiting the persistence of a chromosome break diminishes its mutagenic potential.
    Bennardo N; Gunn A; Cheng A; Hasty P; Stark JM
    PLoS Genet; 2009 Oct; 5(10):e1000683. PubMed ID: 19834534
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of DNA double strand break repair and chromosome aberration formation.
    Iliakis G; Wang H; Perrault AR; Boecker W; Rosidi B; Windhofer F; Wu W; Guan J; Terzoudi G; Pantelias G
    Cytogenet Genome Res; 2004; 104(1-4):14-20. PubMed ID: 15162010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNF169 limits 53BP1 deposition at DSBs to stimulate single-strand annealing repair.
    An L; Dong C; Li J; Chen J; Yuan J; Huang J; Chan KM; Yu CH; Huen MSY
    Proc Natl Acad Sci U S A; 2018 Aug; 115(35):E8286-E8295. PubMed ID: 30104380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased sister chromatid cohesion and DNA damage response factor localization at an enzyme-induced DNA double-strand break in vertebrate cells.
    Dodson H; Morrison CG
    Nucleic Acids Res; 2009 Oct; 37(18):6054-63. PubMed ID: 19700769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beyond repair foci: DNA double-strand break repair in euchromatic and heterochromatic compartments analyzed by transmission electron microscopy.
    Lorat Y; Schanz S; Schuler N; Wennemuth G; Rübe C; Rübe CE
    PLoS One; 2012; 7(5):e38165. PubMed ID: 22666473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recruitment of proteins to DNA double-strand breaks: MDC1 directly recruits RAP80.
    Strauss C; Goldberg M
    Cell Cycle; 2011 Sep; 10(17):2850-7. PubMed ID: 21857162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of DNA double-strand break repair pathway choice.
    Shrivastav M; De Haro LP; Nickoloff JA
    Cell Res; 2008 Jan; 18(1):134-47. PubMed ID: 18157161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Necessities in the Processing of DNA Double Strand Breaks and Their Effects on Genomic Instability and Cancer.
    Iliakis G; Mladenov E; Mladenova V
    Cancers (Basel); 2019 Oct; 11(11):. PubMed ID: 31661831
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of pairing between broken DNA-containing chromatin regions by Ku80, DNA-PKcs, ATM, and 53BP1.
    Yamauchi M; Shibata A; Suzuki K; Suzuki M; Niimi A; Kondo H; Miura M; Hirakawa M; Tsujita K; Yamashita S; Matsuda N
    Sci Rep; 2017 Feb; 7():41812. PubMed ID: 28155885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.