These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 2725710)

  • 1. Cromakalim (BRL 34915) restores in vitro the membrane potential of depolarized human skeletal muscle fibres.
    Spuler A; Lehmann-Horn F; Grafe P
    Naunyn Schmiedebergs Arch Pharmacol; 1989 Mar; 339(3):327-31. PubMed ID: 2725710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of K+ conductance improves in vitro the contraction force of skeletal muscle in hypokalemic periodic paralysis.
    Grafe P; Quasthoff S; Strupp M; Lehmann-Horn F
    Muscle Nerve; 1990 May; 13(5):451-7. PubMed ID: 2345562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cromakalim, pinacidil and RP 49356 activate a tolbutamide-sensitive K+ conductance in human skeletal muscle fibres.
    Quasthoff S; Spuler A; Lehmann-Horn F; Grafe P
    Pflugers Arch; 1989; 414 Suppl 1():S179-80. PubMed ID: 2780252
    [No Abstract]   [Full Text] [Related]  

  • 4. Hyperpolarization of denervated skeletal muscle by lemakalim and its antagonism by glybenclamide and tolbutamide.
    Hong SJ; Chang CC
    J Pharmacol Exp Ther; 1991 Nov; 259(2):932-8. PubMed ID: 1941637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cromakalim on the membrane potassium permeability of frog skeletal muscle in vitro.
    Benton DC; Haylett DG
    Br J Pharmacol; 1992 Sep; 107(1):152-5. PubMed ID: 1422569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. K+ channel openers suppress myotonic activity of human skeletal muscle in vitro.
    Quasthoff S; Spuler A; Spittelmeister W; Lehmann-Horn F; Grafe P
    Eur J Pharmacol; 1990 Sep; 186(1):125-8. PubMed ID: 2282934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of potassium channel openers on single potassium channels in mouse skeletal muscle.
    Weik R; Neumcke B
    Naunyn Schmiedebergs Arch Pharmacol; 1990 Sep; 342(3):258-63. PubMed ID: 2280794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium channel modulation: a new drug principle for regulation of smooth muscle contractility. Studies on isolated airways and arteries.
    Nielsen-Kudsk JE
    Dan Med Bull; 1996 Dec; 43(5):429-47. PubMed ID: 8960816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of potassium channel openers and their antagonists on rat locus coeruleus neurones.
    Finta EP; Harms L; Sevcik J; Fischer HD; Illes P
    Br J Pharmacol; 1993 Jun; 109(2):308-15. PubMed ID: 8358535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of cromakalim (BRL 34915) on potassium conductances in CA3 neurons of the guinea-pig hippocampus in vitro.
    Alzheimer C; Sutor B; ten Bruggencate G
    Naunyn Schmiedebergs Arch Pharmacol; 1989 Oct; 340(4):465-71. PubMed ID: 2586636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of muscle blood cell flux and pO2 by cromakalim (BRL 34915) and other compounds enhancing membrane K+ conductance, but not by Ca2+ antagonists or hydralazine, in an animal model of occlusive arterial disease.
    Angerbach D; Nicholson CD
    Naunyn Schmiedebergs Arch Pharmacol; 1988 Mar; 337(3):341-6. PubMed ID: 3393236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium channel blockers and the effects of cromakalim on the smooth muscle of the guinea-pig bladder.
    Fujii K; Foster CD; Brading AF; Parekh AB
    Br J Pharmacol; 1990 Apr; 99(4):779-85. PubMed ID: 2361173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action of cromakalim on potassium membrane conductance in isolated heart myocytes of frog.
    Pilsudski R; Rougier O; Tourneur Y
    Br J Pharmacol; 1990 Jul; 100(3):581-7. PubMed ID: 2117982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of K+ channel blockers and cromakalim (BRL 34915) on the mechanical activity of guinea pig detrusor smooth muscle.
    Grant TL; Zuzack JS
    J Pharmacol Exp Ther; 1991 Dec; 259(3):1158-64. PubMed ID: 1722252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similarity of ATP-dependent K+ channels in skeletal muscle fibres from normal and mutant mdx mice.
    Allard B; Rougier O
    J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):319-25. PubMed ID: 9032681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the potassium channel openers cromakalim and pinacidil on catecholamine secretion and calcium mobilization in cultured bovine adrenal chromaffin cells.
    Masuda Y; Yoshizumi M; Ishimura Y; Katoh I; Oka M
    Biochem Pharmacol; 1994 May; 47(10):1751-8. PubMed ID: 7515621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of cromakalim-induced relaxations in the smooth muscle cells of guinea-pig mesenteric artery and vein.
    Nakao K; Okabe K; Kitamura K; Kuriyama H; Weston AH
    Br J Pharmacol; 1988 Nov; 95(3):795-804. PubMed ID: 2974740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relaxant action of BRL 34915 in rat uterus.
    Hollingsworth M; Amédée T; Edwards D; Mironneau J; Savineau JP; Small RC; Weston AH
    Br J Pharmacol; 1987 Aug; 91(4):803-13. PubMed ID: 2444298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of KATP channel modulation on net potassium efflux from ischaemic mammalian cardiac tissue.
    Vanheel B; de Hemptinne A
    Cardiovasc Res; 1992 Nov; 26(11):1030-9. PubMed ID: 1291079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cromakalim and lemakalim on slow waves and membrane currents in colonic smooth muscle.
    Post JM; Stevens RJ; Sanders KM; Hume JR
    Am J Physiol; 1991 Feb; 260(2 Pt 1):C375-82. PubMed ID: 1996617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.