These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27257608)

  • 1. A simple and rapid method for combining fluorescent in situ RNA hybridization (FISH) and immunofluorescence in the C. elegans germline.
    Yoon DS; Pendergrass DL; Lee MH
    MethodsX; 2016; 3():378-85. PubMed ID: 27257608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Methods for Single-Molecule Fluorescence In Situ Hybridization and Immunofluorescence in Caenorhabditis elegans Embryos.
    Parker DM; Winkenbach LP; Parker A; Boyson S; Nishimura EO
    Curr Protoc; 2021 Nov; 1(11):e299. PubMed ID: 34826343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. sRNA-FISH: versatile fluorescent in situ detection of small RNAs in plants.
    Huang K; Baldrich P; Meyers BC; Caplan JL
    Plant J; 2019 Apr; 98(2):359-369. PubMed ID: 30577085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-molecule RNA Fluorescence
    Lee C; Seidel HS; Lynch TR; Sorensen EB; Crittenden SL; Kimble J
    Bio Protoc; 2017 Jun; 7(12):e2357. PubMed ID: 34541104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliable protocols for whole-mount fluorescent in situ hybridization (FISH) in the pea aphid Acyrthosiphon pisum: a comprehensive survey and analysis.
    Chung CY; Cook CE; Lin GW; Huang TY; Chang CC
    Insect Sci; 2014 Jun; 21(3):265-77. PubMed ID: 24850784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect Immunofluorescence of Proteins in Oogenic Germ Cells of Caenorhabditis elegans.
    Brenner JL; Schedl T
    Methods Mol Biol; 2016; 1457():9-17. PubMed ID: 27557570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal m(i)RNA Architecture and 3' UTR Regulation in the C. elegans Germline.
    Diag A; Schilling M; Klironomos F; Ayoub S; Rajewsky N
    Dev Cell; 2018 Dec; 47(6):785-800.e8. PubMed ID: 30416012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A modified immunofluorescence
    Meng C; Zhao X; Lao J
    Exp Ther Med; 2018 Jun; 15(6):4623-4628. PubMed ID: 29805478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A RNAscope whole mount approach that can be combined with immunofluorescence to quantify differential distribution of mRNA.
    Kersigo J; Pan N; Lederman JD; Chatterjee S; Abel T; Pavlinkova G; Silos-Santiago I; Fritzsch B
    Cell Tissue Res; 2018 Nov; 374(2):251-262. PubMed ID: 29974252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence in situ hybridization of small non-coding RNAs.
    Vautrot V; Aigueperse C; Branlant C; Behm-Ansmant I
    Methods Mol Biol; 2015; 1296():73-83. PubMed ID: 25791592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous detection of mRNA and protein in single cells using immunofluorescence-combined single-molecule RNA FISH.
    Kochan J; Wawro M; Kasza A
    Biotechniques; 2015 Oct; 59(4):209-12, 214, 216 passim. PubMed ID: 26458549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quick fluorescent in situ hybridization protocol for Xist RNA combined with immunofluorescence of histone modification in X-chromosome inactivation.
    Yue M; Charles Richard JL; Yamada N; Ogawa A; Ogawa Y
    J Vis Exp; 2014 Nov; (93):e52053. PubMed ID: 25489864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Germ Granules Prevent Accumulation of Somatic Transcripts in the Adult
    Knutson AK; Egelhofer T; Rechtsteiner A; Strome S
    Genetics; 2017 May; 206(1):163-178. PubMed ID: 28258184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stellaris® RNA Fluorescence In Situ Hybridization for the Simultaneous Detection of Immature and Mature Long Noncoding RNAs in Adherent Cells.
    Orjalo AV; Johansson HE
    Methods Mol Biol; 2016; 1402():119-134. PubMed ID: 26721487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The TRIM-NHL protein NHL-2 is a co-factor in the nuclear and somatic RNAi pathways in
    Davis GM; Tu S; Anderson JW; Colson RN; Gunzburg MJ; Francisco MA; Ray D; Shrubsole SP; Sobotka JA; Seroussi U; Lao RX; Maity T; Wu MZ; McJunkin K; Morris QD; Hughes TR; Wilce JA; Claycomb JM; Weng Z; Boag PR
    Elife; 2018 Dec; 7():. PubMed ID: 30575518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-mount in situ hybridization of mouse brain to precisely locate mRNAs via fluorescence tomography.
    Guo W; Liu X; Hu Q; Huang F; Li N; Zhang Q; Li Y; Xiong F; Luo Q; Zeng S
    J Biophotonics; 2019 Apr; 12(4):e201800249. PubMed ID: 30417571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex coding of endogenous siRNA, transcriptional silencing and H3K9 methylation on native targets of germline nuclear RNAi in C. elegans.
    Ni JZ; Chen E; Gu SG
    BMC Genomics; 2014 Dec; 15(1):1157. PubMed ID: 25534009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole Mount RNA-FISH on Ovules and Developing Seeds.
    Bleckmann A; Dresselhaus T
    Methods Mol Biol; 2017; 1669():159-171. PubMed ID: 28936657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locating RNAs in situ with FISH-STIC probes.
    Sinnamon JR; Czaplinski K
    Methods Mol Biol; 2015; 1206():137-48. PubMed ID: 25240893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene oxide-quenching-based fluorescence in situ hybridization (G-FISH) to detect RNA in tissue: Simple and fast tissue RNA diagnostics.
    Hwang DW; Choi Y; Kim D; Park HY; Kim KW; Kim MY; Park CK; Lee DS
    Nanomedicine; 2019 Feb; 16():162-172. PubMed ID: 30594658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.