These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
807 related articles for article (PubMed ID: 27257820)
21. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. Banerjee S; Datta S; Chattyopadhyay D; Sarkar P J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(14):1736-47. PubMed ID: 22175878 [TBL] [Abstract][Full Text] [Related]
22. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics. Hatayama M; Sato T; Shinoda K; Inoue C J Biosci Bioeng; 2011 Mar; 111(3):326-32. PubMed ID: 21185228 [TBL] [Abstract][Full Text] [Related]
23. Arsenic (As) oxidation by core endosphere microbiome mediates As speciation in Pteris vittata roots. Sun X; Kong T; Huang D; Chen Z; Kolton M; Yang J; Huang Y; Cao Y; Gao P; Yang N; Li B; Liu H; Sun W J Hazard Mater; 2023 Jul; 454():131458. PubMed ID: 37099912 [TBL] [Abstract][Full Text] [Related]
24. Characterization of As efflux from the roots of As hyperaccumulator Pteris vittata L. Huang Y; Hatayama M; Inoue C Planta; 2011 Dec; 234(6):1275-84. PubMed ID: 21789508 [TBL] [Abstract][Full Text] [Related]
25. Phytoextraction efficiency of Pteris vittata grown on a naturally As-rich soil and characterization of As-resistant rhizosphere bacteria. Antenozio ML; Giannelli G; Marabottini R; Brunetti P; Allevato E; Marzi D; Capobianco G; Bonifazi G; Serranti S; Visioli G; Stazi SR; Cardarelli M Sci Rep; 2021 Mar; 11(1):6794. PubMed ID: 33762609 [TBL] [Abstract][Full Text] [Related]
26. Cupriavidus basilensis strain r507, a toxic arsenic phytoextraction facilitator, potentiates the arsenic accumulation by Pteris vittata. Yang C; Ho YN; Makita R; Inoue C; Chien MF Ecotoxicol Environ Saf; 2020 Mar; 190():110075. PubMed ID: 31881405 [TBL] [Abstract][Full Text] [Related]
27. Arsenic uptake, arsenite efflux and plant growth in hyperaccumulator Pteris vittata: Role of arsenic-resistant bacteria. Han YH; Fu JW; Chen Y; Rathinasabapathi B; Ma LQ Chemosphere; 2016 Feb; 144():1937-42. PubMed ID: 26547029 [TBL] [Abstract][Full Text] [Related]
28. Culturable endophytic bacteria of Camellia species endowed with plant growth promoting characteristics. Borah A; Das R; Mazumdar R; Thakur D J Appl Microbiol; 2019 Sep; 127(3):825-844. PubMed ID: 31216598 [TBL] [Abstract][Full Text] [Related]
29. Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L. Singh N; Ma LQ Environ Pollut; 2006 May; 141(2):238-46. PubMed ID: 16257102 [TBL] [Abstract][Full Text] [Related]
30. Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata. Xu JY; Li HB; Liang S; Luo J; Ma LQ Environ Pollut; 2014 Nov; 194():105-111. PubMed ID: 25103044 [TBL] [Abstract][Full Text] [Related]
31. Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L. Ghosh P; Rathinasabapathi B; Ma LQ Bioresour Technol; 2011 Oct; 102(19):8756-61. PubMed ID: 21840210 [TBL] [Abstract][Full Text] [Related]
32. Arsenic-resistant and plant growth-promoting Firmicutes and γ-Proteobacteria species from industrially polluted irrigation water and corresponding cropland. Qamar N; Rehman Y; Hasnain S J Appl Microbiol; 2017 Sep; 123(3):748-758. PubMed ID: 28708308 [TBL] [Abstract][Full Text] [Related]
33. Bacteria associated with Comamonadaceae are key arsenite oxidizer associated with Pteris vittata root. Huang D; Sun X; Ghani MU; Li B; Yang J; Chen Z; Kong T; Xiao E; Liu H; Wang Q; Sun W Environ Pollut; 2024 May; 349():123909. PubMed ID: 38582183 [TBL] [Abstract][Full Text] [Related]
34. Characterization of Arsenic-Resistant Endophytic Bacteria From Alfalfa and Chickpea Plants. Tashan H; Harighi B; Rostamzadeh J; Azizi A Front Plant Sci; 2021; 12():696750. PubMed ID: 34367218 [TBL] [Abstract][Full Text] [Related]
35. Bacteria-mediated arsenic oxidation and reduction in the growth media of arsenic hyperaccumulator Pteris vittata. Wang X; Rathinasabapathi B; de Oliveira LM; Guilherme LR; Ma LQ Environ Sci Technol; 2012 Oct; 46(20):11259-66. PubMed ID: 22994133 [TBL] [Abstract][Full Text] [Related]
36. Characterization of arsenic resistant plant-growth promoting indigenous soil bacteria isolated from Center-East regions of India. Pandey N; Keshavkant S J Basic Microbiol; 2019 Aug; 59(8):807-819. PubMed ID: 31070248 [TBL] [Abstract][Full Text] [Related]
37. Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Zhao L; Xu Y; Lai XH; Shan C; Deng Z; Ji Y Braz J Microbiol; 2015; 46(4):977-89. PubMed ID: 26691455 [TBL] [Abstract][Full Text] [Related]
38. Arsenic speciation for the phytoremediation by the Chinese brake fern, Pteris vittata. Shoji R; Yajima R; Yano Y J Environ Sci (China); 2008; 20(12):1463-8. PubMed ID: 19209633 [TBL] [Abstract][Full Text] [Related]
39. Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: Implications for Sorghum sudanense biomass production and phytostabilization. Li Y; Wang Q; Wang L; He LY; Sheng XF Ecotoxicol Environ Saf; 2016 Feb; 124():163-168. PubMed ID: 26517728 [TBL] [Abstract][Full Text] [Related]
40. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Anderson CR; Cook GM Curr Microbiol; 2004 May; 48(5):341-7. PubMed ID: 15060729 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]