These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27257886)

  • 21. Possibility for using of two Paulownia lines as a tool for remediation of heavy metal contaminated soil.
    Tzvetkova N; Miladinova K; Ivanova K; Georgieva T; Geneva M; Markovska Y
    J Environ Biol; 2015 Jan; 36 Spec No():145-51. PubMed ID: 26591894
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioaccumulation and translocation of heavy metals by nine native plant species grown at a sewage sludge dump site.
    Eid EM; Shaltout KH
    Int J Phytoremediation; 2016 Nov; 18(11):1075-85. PubMed ID: 27184987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phytoremediation efficiency of Portulaca oleracea L. naturally growing in some industrial sites, Dakahlia District, Egypt.
    Elshamy MM; Heikal YM; Bonanomi G
    Chemosphere; 2019 Jun; 225():678-687. PubMed ID: 30903843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Increasing Salinity on Development of Giant Reed (Arundo donax) from Rhizome and Culms.
    Allinson G
    Bull Environ Contam Toxicol; 2017 Dec; 99(6):743-747. PubMed ID: 29080112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L.
    Sarathambal C; Khankhane PJ; Gharde Y; Kumar B; Varun M; Arun S
    Int J Phytoremediation; 2017 Apr; 19(4):360-370. PubMed ID: 27592507
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights on phytoremediation of chromium from tannery wastewater contaminated soil.
    Gebretekle BG; Teklu Gebretsadik T; Mekonnen KN; Asgedom AG
    Int J Phytoremediation; 2024; 26(12):1923-1931. PubMed ID: 38900152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arundo donax L.: a non-food crop for bioenergy and bio-compound production.
    Corno L; Pilu R; Adani F
    Biotechnol Adv; 2014 Dec; 32(8):1535-49. PubMed ID: 25457226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioaccumulation of trace elements in trophic levels of wetland plants and waterfowl birds.
    Alhashemi AS; Karbassi AR; Kiabi BH; Monavari SM; Nabavi SM; Sekhavatjou MS
    Biol Trace Elem Res; 2011 Sep; 142(3):500-16. PubMed ID: 20694580
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioconcentration of trace metals in the tissues of two leafy vegetables widely consumed in South West Nigeria.
    Tyokumbur ET; Okorie T
    Biol Trace Elem Res; 2011 May; 140(2):215-24. PubMed ID: 20393812
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trace elements in agroecosystems and impacts on the environment.
    He ZL; Yang XE; Stoffella PJ
    J Trace Elem Med Biol; 2005; 19(2-3):125-40. PubMed ID: 16325528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytoextraction of soil trace elements by willow during a phytoremediation trial in Southern Québec, Canada.
    Courchesne F; Turmel MC; Cloutier-Hurteau B; Constantineau S; Munro L; Labrecque M
    Int J Phytoremediation; 2017 Jun; 19(6):545-554. PubMed ID: 27996300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: a pot experiment.
    Lehmann C; Rebele F
    Int J Phytoremediation; 2004; 6(2):169-83. PubMed ID: 15328982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy.
    Yu S; Sheng L; Zhang C; Deng H
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 198():88-91. PubMed ID: 29524747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elevated concentrations of trace elements in soil do not necessarily reflect metals available to plants.
    Antonious GF; Silitonga MR; Tsegaye TD; Unrine JM; Coolong T; Snyder JC
    J Environ Sci Health B; 2013; 48(3):219-25. PubMed ID: 23356344
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in growth rate and macroelement and trace element accumulation in Hydrocharis morsus-ranae L. during the growing season in relation to environmental contamination.
    Polechońska L; Samecka-Cymerman A; Dambiec M
    Environ Sci Pollut Res Int; 2017 Feb; 24(6):5439-5451. PubMed ID: 28028700
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Damped oscillations of the giant reed Arundo donax (Poaceae).
    Speck O; Spatz HC
    Am J Bot; 2004 Jun; 91(6):789-96. PubMed ID: 21653433
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cadmium phytoremediation by Arundo donax L. from contaminated soil and water.
    Sabeen M; Mahmood Q; Irshad M; Fareed I; Khan A; Ullah F; Hussain J; Hayat Y; Tabassum S
    Biomed Res Int; 2013; 2013():324830. PubMed ID: 24459667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Warming and drought change trace element bioaccumulation patterns in a Mediterranean shrubland.
    Sardans J; Peñuelas J; Estiarte M
    Chemosphere; 2008 Jan; 70(5):874-85. PubMed ID: 17709128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Giant reed growth and effects on soil biological fertility in assisted phytoremediation of an industrial polluted soil.
    Fiorentino N; Ventorino V; Rocco C; Cenvinzo V; Agrelli D; Gioia L; Di Mola I; Adamo P; Pepe O; Fagnano M
    Sci Total Environ; 2017 Jan; 575():1375-1383. PubMed ID: 27720598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparative study of worm-sludge treatment reed bed planted with Phragmites australis and Arundo donax in the Mediterranean region.
    Gholipour A; Fragoso R; Galvão A; Duarte E
    Environ Sci Pollut Res Int; 2024 Aug; 31(39):51551-51567. PubMed ID: 39112902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.