BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 2725823)

  • 1. Developmental changes in high-affinity uptake of GABA by cultured neurons.
    Balcar VJ; Hauser KL; Demieville H
    Neurochem Res; 1989 Mar; 14(3):229-33. PubMed ID: 2725823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The uptake and radioautographical localization in the frog retina of [3H](+/-)-aminocyclohexane carboxylic acid, a selective inhibitor of neuronal GABA transport.
    Neal MJ; Cunningham JR; Marshall J
    Brain Res; 1979 Nov; 176(2):285-96. PubMed ID: 91406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in uptake kinetics of cis-3-aminocyclohexane carboxylic acid into neurons and astrocytes in primary cultures.
    Larsson OM; Johnston GA; Schousboe A
    Brain Res; 1983 Feb; 260(2):279-85. PubMed ID: 6299459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subpopulations of rat cerebellar astrocytes in primary culture: morphology, cell surface antigens and [3H]GABA transport.
    Johnstone SR; Levi G; Wilkin GP; Schneider A; Ciotti MT
    Brain Res; 1986 Jan; 389(1-2):63-75. PubMed ID: 2418929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic analysis of the accumulation of gamma-aminobutyric acid by particulate fractions of rat brain: comparison of the effects of nipecotic acid and cis-3-aminocyclohexane-1-carboxylic acid.
    Yunger LM; Moonsammy GI; Rush JA
    Neurochem Res; 1983 Jun; 8(6):757-69. PubMed ID: 6621773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of cellular transport on the interaction of amino acids with gamma-aminobutyric acid (GABA)-receptors in the isolated olfactory cortex of the guinea-pig.
    Brown DA; Collins GG; Galvan M
    Br J Pharmacol; 1980 Feb; 68(2):251-62. PubMed ID: 6244038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of gamma-aminobutyric acid and glycine by synaptosomes from postmortem human brain.
    Hardy JA; Barton A; Lofdahl E; Cheetham SC; Johnston GA; Dodd PR
    J Neurochem; 1986 Aug; 47(2):460-7. PubMed ID: 3734788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of GABA neurons in rat cortical cultures by GABA uptake autoradiography.
    White WF; Snodgrass SR; Dichter M
    Brain Res; 1980 May; 190(1):139-52. PubMed ID: 6247007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postnatal changes of GABAergic and glutamatergic parameters.
    Wong PT; McGeer EG
    Brain Res; 1981 Jul; 227(4):519-29. PubMed ID: 7260657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoradiographic localization of [3H] gamma-aminobutyric acid in neuronal elements of the rat gastric antrum and intestine.
    Krantis A; Webb T
    J Auton Nerv Syst; 1989 Dec; 29(1):41-8. PubMed ID: 2534397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of previously incorporated gamma-[3H]aminobutyric acid in rabbit caudate nucleus slices.
    Limberger N; Späth L; Starke K
    J Neurochem; 1986 Apr; 46(4):1102-8. PubMed ID: 3950620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurochemical evidence for a neuronal GABAergic system in the rat sympathetic superior cervical ganglion.
    González Burgos G; Rosenstein RE; Cardinali DP
    J Neural Transm Gen Sect; 1992; 89(1-2):27-40. PubMed ID: 1358123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autoradiographic study of the distribution of [3H]gamma-aminobutyrate-accumulating neural elements in guinea-pig intestine: evidence for a transmitter function of gamma-aminobutyrate.
    Krantis A; Kerr DI; Dennis BJ
    Neuroscience; 1986 Apr; 17(4):1243-55. PubMed ID: 3714043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modafinil prevents glutamate cytotoxicity in cultured cortical neurons.
    Antonelli T; Ferraro L; Hillion J; Tomasini MC; Rambert FA; Fuxe K
    Neuroreport; 1998 Dec; 9(18):4209-13. PubMed ID: 9926875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake of gamma-aminobutyric acid by human blood platelets: comparison with CNS uptake.
    Hambley JW; Johnston GA
    Life Sci; 1985 May; 36(21):2053-62. PubMed ID: 3923286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the gamma-aminobutyrate transaminase inhibitors gabaculine and gamma-vinyl GABA on gamma-aminobutyric acid release from slices of rat cerebral cortex.
    Bedwani JR; Mehta A
    Neurochem Res; 1987 Jan; 12(1):49-52. PubMed ID: 3574587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of gamma-[3H]aminobutyric acid release from cultured mouse cerebral cortex neurons by sulphur-containing excitatory amino acid transmitter candidates: receptor activation mediates two distinct mechanisms of release.
    Dunlop J; Grieve A; Schousboe A; Griffiths R
    J Neurochem; 1991 Oct; 57(4):1388-97. PubMed ID: 1680165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal and glial gamma-aminobutyric acid+ transporters are distinct proteins.
    Mabjeesh NJ; Frese M; Rauen T; Jeserich G; Kanner BI
    FEBS Lett; 1992 Mar; 299(1):99-102. PubMed ID: 1544482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The radioautographical localization in the vertebrate retina of [3H]-(+ or -)-cis-aminocyclohexane carboxylic acid (ACHC); a selective inhibitor of neuronal GABA transport.
    Cunningham J; Marshall J; Neal MJ
    Exp Eye Res; 1981 Apr; 32(4):445-50. PubMed ID: 7238629
    [No Abstract]   [Full Text] [Related]  

  • 20. Influence of pipecolic acid on the release and uptake of [3H]GABA from brain slices of mouse cerebral cortex.
    Gutiérrez MC; Delgado-Coello BA
    Neurochem Res; 1989 May; 14(5):405-8. PubMed ID: 2747832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.