These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 27258277)
1. Tool Condition Monitoring and Remaining Useful Life Prognostic Based on a Wireless Sensor in Dry Milling Operations. Zhang C; Yao X; Zhang J; Jin H Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27258277 [TBL] [Abstract][Full Text] [Related]
2. Remaining Useful-Life Prediction of the Milling Cutting Tool Using Time-Frequency-Based Features and Deep Learning Models. Sayyad S; Kumar S; Bongale A; Kotecha K; Abraham A Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420825 [TBL] [Abstract][Full Text] [Related]
3. Multi-Sensor Data Fusion for Remaining Useful Life Prediction of Machining Tools by IABC-BPNN in Dry Milling Operations. Liu M; Yao X; Zhang J; Chen W; Jing X; Wang K Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32824889 [TBL] [Abstract][Full Text] [Related]
4. A Multisensor Fusion Method for Tool Condition Monitoring in Milling. Zhou Y; Xue W Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423828 [TBL] [Abstract][Full Text] [Related]
5. A Machine Learning Approach for Wear Monitoring of End Mill by Self-Powering Wireless Sensor Nodes. Ostasevicius V; Karpavicius P; Paulauskaite-Taraseviciene A; Jurenas V; Mystkowski A; Cesnavicius R; Kizauskiene L Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33946491 [TBL] [Abstract][Full Text] [Related]
6. Fuzzy regression modeling for tool performance prediction and degradation detection. Li X; Er MJ; Lim BS; Zhou JH; Gan OP; Rutkowski L Int J Neural Syst; 2010 Oct; 20(5):405-19. PubMed ID: 20945519 [TBL] [Abstract][Full Text] [Related]
7. Artificial Intelligence-Based Hole Quality Prediction in Micro-Drilling Using Multiple Sensors. Ranjan J; Patra K; Szalay T; Mia M; Gupta MK; Song Q; Krolczyk G; Chudy R; Pashnyov VA; Pimenov DY Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046037 [TBL] [Abstract][Full Text] [Related]
8. A Novel Order Analysis and Stacked Sparse Auto-Encoder Feature Learning Method for Milling Tool Wear Condition Monitoring. Ou J; Li H; Huang G; Zhou Q Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32438608 [TBL] [Abstract][Full Text] [Related]
9. Acoustic emission signals analysis to differentiate the damage mechanism in the drilling of Al-5%B Thirukkumaran K; Mukhopadhyay CK Ultrasonics; 2022 Aug; 124():106762. PubMed ID: 35644099 [TBL] [Abstract][Full Text] [Related]
10. Force sensor based tool condition monitoring using a heterogeneous ensemble learning model. Wang G; Yang Y; Li Z Sensors (Basel); 2014 Nov; 14(11):21588-602. PubMed ID: 25405514 [TBL] [Abstract][Full Text] [Related]
11. A Novel Multi-Task Learning Model with PSAE Network for Simultaneous Estimation of Surface Quality and Tool Wear in Milling of Nickel-Based Superalloy Haynes 230. Cheng M; Jiao L; Yan P; Gu H; Sun J; Qiu T; Wang X Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808436 [TBL] [Abstract][Full Text] [Related]
12. Tool Wear Monitoring in Milling Based on Fine-Grained Image Classification of Machined Surface Images. Yang J; Duan J; Li T; Hu C; Liang J; Shi T Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366114 [TBL] [Abstract][Full Text] [Related]
13. Three-Stage Wiener-Process-Based Model for Remaining Useful Life Prediction of a Cutting Tool in High-Speed Milling. Liu W; Yang WA; You Y Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808259 [TBL] [Abstract][Full Text] [Related]
14. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring. Chung TK; Yeh PC; Lee H; Lin CM; Tseng CY; Lo WT; Wang CM; Wang WC; Tu CJ; Tasi PY; Chang JW Sensors (Basel); 2016 Feb; 16(3):269. PubMed ID: 26907297 [TBL] [Abstract][Full Text] [Related]
15. Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network. Wu J; Hu K; Cheng Y; Zhu H; Shao X; Wang Y ISA Trans; 2020 Feb; 97():241-250. PubMed ID: 31300159 [TBL] [Abstract][Full Text] [Related]
16. Multi-Sensory Tool Holder for Process Force Monitoring and Chatter Detection in Milling. Schuster A; Otto A; Rentzsch H; Ihlenfeldt S Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275453 [TBL] [Abstract][Full Text] [Related]
17. DeepTool: A deep learning framework for tool wear onset detection and remaining useful life prediction. Kamat P; Kumar S; Kotecha K MethodsX; 2024 Dec; 13():102965. PubMed ID: 39381346 [TBL] [Abstract][Full Text] [Related]
18. Tool Wear Condition Monitoring by Combining Variational Mode Decomposition and Ensemble Learning. Yuan J; Liu L; Yang Z; Zhang Y Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33121086 [TBL] [Abstract][Full Text] [Related]
19. Nonlinear Analysis of Auscultation Signals in TCM Using the Combination of Wavelet Packet Transform and Sample Entropy. Yan JJ; Wang YQ; Guo R; Zhou JZ; Yan HX; Xia CM; Shen Y Evid Based Complement Alternat Med; 2012; 2012():247012. PubMed ID: 22690242 [TBL] [Abstract][Full Text] [Related]