These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 27258555)

  • 1. Application of a Combined Model with Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting Hepatitis Incidence in Heng County, China.
    Wei W; Jiang J; Liang H; Gao L; Liang B; Huang J; Zang N; Liao Y; Yu J; Lai J; Qin F; Su J; Ye L; Chen H
    PLoS One; 2016; 11(6):e0156768. PubMed ID: 27258555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Hybrid Model Using an Autoregressive Integrated Moving Average and a Generalized Regression Neural Network for the Incidence of Tuberculosis in Heng County, China.
    Wei W; Jiang J; Gao L; Liang B; Huang J; Zang N; Ning C; Liao Y; Lai J; Yu J; Qin F; Chen H; Su J; Ye L; Liang H
    Am J Trop Med Hyg; 2017 Sep; 97(3):799-805. PubMed ID: 28820678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of autoregressive integrated moving average model and generalised regression neural network model for prediction of haemorrhagic fever with renal syndrome in China: a time-series study.
    Wang YW; Shen ZZ; Jiang Y
    BMJ Open; 2019 Jun; 9(6):e025773. PubMed ID: 31209084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population.
    Li Z; Wang Z; Song H; Liu Q; He B; Shi P; Ji Y; Xu D; Wang J
    Infect Drug Resist; 2019; 12():1011-1020. PubMed ID: 31118707
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparison of Two Hybrid Models for Forecasting the Incidence of Hemorrhagic Fever with Renal Syndrome in Jiangsu Province, China.
    Wu W; Guo J; An S; Guan P; Ren Y; Xia L; Zhou B
    PLoS One; 2015; 10(8):e0135492. PubMed ID: 26270814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Comparison of predictive effect between the single auto regressive integrated moving average (ARIMA) model and the ARIMA-generalized regression neural network (GRNN) combination model on the incidence of scarlet fever].
    Zhu Y; Xia JL; Wang J
    Zhonghua Liu Xing Bing Xue Za Zhi; 2009 Sep; 30(9):964-8. PubMed ID: 20193238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a long short-term memory neural network: a burgeoning method of deep learning in forecasting HIV incidence in Guangxi, China.
    Wang G; Wei W; Jiang J; Ning C; Chen H; Huang J; Liang B; Zang N; Liao Y; Chen R; Lai J; Zhou O; Han J; Liang H; Ye L
    Epidemiol Infect; 2019 Jan; 147():e194. PubMed ID: 31364559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time series analysis of human brucellosis in mainland China by using Elman and Jordan recurrent neural networks.
    Wu W; An SY; Guan P; Huang DS; Zhou BS
    BMC Infect Dis; 2019 May; 19(1):414. PubMed ID: 31088391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of ARIMA and GM(1,1) models for prediction of hepatitis B in China.
    Wang YW; Shen ZZ; Jiang Y
    PLoS One; 2018; 13(9):e0201987. PubMed ID: 30180159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Prediction of schistosomiasis infection rates of population based on ARIMA-NARNN model].
    Ke-Wei W; Yu W; Jin-Ping L; Yu-Yu J
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2016 Jul; 28(6):630-634. PubMed ID: 29469251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of a combined mathematical model to forecast the incidence of hepatitis E in Shanghai, China.
    Ren H; Li J; Yuan ZA; Hu JY; Yu Y; Lu YH
    BMC Infect Dis; 2013 Sep; 13():421. PubMed ID: 24010871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a hybrid model for predicting the incidence of tuberculosis in Hubei, China.
    Zhang G; Huang S; Duan Q; Shu W; Hou Y; Zhu S; Miao X; Nie S; Wei S; Guo N; Shan H; Xu Y
    PLoS One; 2013; 8(11):e80969. PubMed ID: 24223232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time series model for forecasting the number of new admission inpatients.
    Zhou L; Zhao P; Wu D; Cheng C; Huang H
    BMC Med Inform Decis Mak; 2018 Jun; 18(1):39. PubMed ID: 29907102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a Hybrid Model to Forecast the Prevalence of Schistosomiasis in Humans.
    Zhou L; Xia J; Yu L; Wang Y; Shi Y; Cai S; Nie S
    Int J Environ Res Public Health; 2016 Mar; 13(4):355. PubMed ID: 27023573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on the predictive effect of a combined model of ARIMA and neural networks on human brucellosis in Shanxi Province, China: a time series predictive analysis.
    Zhai M; Li W; Tie P; Wang X; Xie T; Ren H; Zhang Z; Song W; Quan D; Li M; Chen L; Qiu L
    BMC Infect Dis; 2021 Mar; 21(1):280. PubMed ID: 33740904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of an autoregressive integrated moving average model for predicting injury mortality in Xiamen, China.
    Lin Y; Chen M; Chen G; Wu X; Lin T
    BMJ Open; 2015 Dec; 5(12):e008491. PubMed ID: 26656013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid model for short-term bacillary dysentery prediction in Yichang City, China.
    Yan W; Xu Y; Yang X; Zhou Y
    Jpn J Infect Dis; 2010 Jul; 63(4):264-70. PubMed ID: 20657066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of hepatitis E using machine learning models.
    Guo Y; Feng Y; Qu F; Zhang L; Yan B; Lv J
    PLoS One; 2020; 15(9):e0237750. PubMed ID: 32941452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model.
    Wang Y; Xu C; Zhang S; Wang Z; Yang L; Zhu Y; Yuan J
    BMJ Open; 2019 Jul; 9(7):e024409. PubMed ID: 31371283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonality and Trend Forecasting of Tuberculosis Incidence in Chongqing, China.
    Liao Z; Zhang X; Zhang Y; Peng D
    Interdiscip Sci; 2019 Mar; 11(1):77-85. PubMed ID: 30734907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.