BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 27258682)

  • 1. Sliced Magnetic Polyacrylamide Hydrogel with Cell-Adhesive Microarray Interface: A Novel Multicellular Spheroid Culturing Platform.
    Hu K; Zhou N; Li Y; Ma S; Guo Z; Cao M; Zhang Q; Sun J; Zhang T; Gu N
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15113-9. PubMed ID: 27258682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Quality Multicellular Tumor Spheroid Induction Platform Based on Anisotropic Magnetic Hydrogel.
    Tang S; Hu K; Sun J; Li Y; Guo Z; Liu M; Liu Q; Zhang F; Gu N
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10446-10452. PubMed ID: 28247762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoresponsive poly(N-isopropylacrylamide) hydrogel substrates micropatterned with poly(ethylene glycol) hydrogel for adipose mesenchymal stem cell spheroid formation and retrieval.
    Kim G; Jung Y; Cho K; Lee HJ; Koh WG
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111128. PubMed ID: 32600725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture.
    Liu H; Liu J; Qi C; Fang Y; Zhang L; Zhuo R; Jiang X
    Acta Biomater; 2016 Apr; 35():228-37. PubMed ID: 26911882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids.
    Kang J; Lee DW; Hwang HJ; Yeon SE; Lee MY; Kuh HJ
    Lab Chip; 2016 Jun; 16(12):2265-76. PubMed ID: 27194205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of the formation of embedded multicellular spheroids of MCF-7 cells: How to reliably produce a biomimetic 3D model.
    Zhang W; Li C; Baguley BC; Zhou F; Zhou W; Shaw JP; Wang Z; Wu Z; Liu J
    Anal Biochem; 2016 Dec; 515():47-54. PubMed ID: 27717854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a magnetic 3D spheroid platform with potential application for high-throughput drug screening.
    Guo WM; Loh XJ; Tan EY; Loo JS; Ho VH
    Mol Pharm; 2014 Jul; 11(7):2182-9. PubMed ID: 24842574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of uniform-sized multicellular tumor spheroids using hydrogel microwells for advanced drug screening.
    Lee JM; Park DY; Yang L; Kim EJ; Ahrberg CD; Lee KB; Chung BG
    Sci Rep; 2018 Nov; 8(1):17145. PubMed ID: 30464248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogel matrix presence and composition influence drug responses of encapsulated glioblastoma spheroids.
    Hill L; Bruns J; Zustiak SP
    Acta Biomater; 2021 Sep; 132():437-447. PubMed ID: 34010694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic chip with a U-shaped microstructure array for multicellular spheroid formation, culturing and analysis.
    Fu CY; Tseng SY; Yang SM; Hsu L; Liu CH; Chang HY
    Biofabrication; 2014 Mar; 6(1):015009. PubMed ID: 24589876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategy for constructing vascularized adipose units in poly(l-glutamic acid) hydrogel porous scaffold through inducing in-situ formation of ASCs spheroids.
    Zhang K; Song L; Wang J; Yan S; Li G; Cui L; Yin J
    Acta Biomater; 2017 Mar; 51():246-257. PubMed ID: 28093366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning microenvironment for multicellular spheroid formation in thermo-responsive anionic microgel scaffolds.
    Cui X; Hartanto Y; Wu C; Bi J; Dai S; Zhang H
    J Biomed Mater Res A; 2018 Nov; 106(11):2899-2909. PubMed ID: 30369008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers.
    Chen K; Wu M; Guo F; Li P; Chan CY; Mao Z; Li S; Ren L; Zhang R; Huang TJ
    Lab Chip; 2016 Jul; 16(14):2636-43. PubMed ID: 27327102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep conical agarose microwell array for adhesion independent three-dimensional cell culture and dynamic volume measurement.
    Thomsen AR; Aldrian C; Bronsert P; Thomann Y; Nanko N; Melin N; Rücker G; Follo M; Grosu AL; Niedermann G; Layer PG; Heselich A; Lund PG
    Lab Chip; 2017 Dec; 18(1):179-189. PubMed ID: 29211089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic reconstruction of three-dimensional tissues from multicellular spheroids.
    Lin RZ; Chu WC; Chiang CC; Lai CH; Chang HY
    Tissue Eng Part C Methods; 2008 Sep; 14(3):197-205. PubMed ID: 18781835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth of hollow cell spheroids in microbead templated chambers.
    Wang E; Wang D; Geng A; Seo R; Gong X
    Biomaterials; 2017 Oct; 143():57-64. PubMed ID: 28763630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel approach to producing uniform 3-D tumor spheroid constructs using ultrasound treatment.
    Karamikamkar S; Behzadfar E; Cheung KC
    Biomed Microdevices; 2018 Mar; 20(2):27. PubMed ID: 29511829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous 2D and 3D cell culture array for multicellular geometry, drug discovery and tumor microenvironment reconstruction.
    Li S; Yang K; Chen X; Zhu X; Zhou H; Li P; Chen Y; Jiang Y; Li T; Qin X; Yang H; Wu C; Ji B; You F; Liu Y
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34407511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies.
    Kingsley DM; Roberge CL; Rudkouskaya A; Faulkner DE; Barroso M; Intes X; Corr DT
    Acta Biomater; 2019 Sep; 95():357-370. PubMed ID: 30776506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.