These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27258691)

  • 1. Optogenetic Control of Nuclear Protein Import in Living Cells Using Light-Inducible Nuclear Localization Signals (LINuS).
    Wehler P; Niopek D; Eils R; Di Ventura B
    Curr Protoc Chem Biol; 2016 Jun; 8(2):131-145. PubMed ID: 27258691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic Control of Nucleocytoplasmic Protein Transport.
    Weis D; Di Ventura B
    Methods Mol Biol; 2020; 2173():127-136. PubMed ID: 32651914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells.
    Niopek D; Benzinger D; Roensch J; Draebing T; Wehler P; Eils R; Di Ventura B
    Nat Commun; 2014 Jul; 5():4404. PubMed ID: 25019686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-Dependent Cytoplasmic Recruitment Enhances the Dynamic Range of a Nuclear Import Photoswitch.
    Yumerefendi H; Wang H; Dickinson DJ; Lerner AM; Malkus P; Goldstein B; Hahn K; Kuhlman B
    Chembiochem; 2018 Jun; 19(12):1319-1325. PubMed ID: 29446199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of a blue light transmission area in living animals using light-induced nuclear translocation of fluorescent proteins.
    Inutsuka A; Kimizuka N; Takanohashi N; Yakabu H; Onaka T
    Biochem Biophys Res Commun; 2020 Jan; 522(1):138-143. PubMed ID: 31757418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of protein function through optochemical translocation.
    Engelke H; Chou C; Uprety R; Jess P; Deiters A
    ACS Synth Biol; 2014 Oct; 3(10):731-6. PubMed ID: 24933258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of nuclear import by light-induced activation of caged nuclear localization signal in living cells.
    Watai Y; Sase I; Shiono H; Nakano Y
    FEBS Lett; 2001 Jan; 488(1-2):39-44. PubMed ID: 11163792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red Light-Regulated Reversible Nuclear Localization of Proteins in Mammalian Cells and Zebrafish.
    Beyer HM; Juillot S; Herbst K; Samodelov SL; Müller K; Schamel WW; Römer W; Schäfer E; Nagy F; Strähle U; Weber W; Zurbriggen MD
    ACS Synth Biol; 2015 Sep; 4(9):951-8. PubMed ID: 25803699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guidelines for Photoreceptor Engineering.
    Ziegler T; Schumacher CH; Möglich A
    Methods Mol Biol; 2016; 1408():389-403. PubMed ID: 26965138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Improved Photoswitches for the Control of Nucleocytoplasmic Distribution.
    Lerner AM; Yumerefendi H; Goudy OJ; Strahl BD; Kuhlman B
    ACS Synth Biol; 2018 Dec; 7(12):2898-2907. PubMed ID: 30441907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic control of nuclear protein export.
    Niopek D; Wehler P; Roensch J; Eils R; Di Ventura B
    Nat Commun; 2016 Feb; 7():10624. PubMed ID: 26853913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic Control for Investigating Subcellular Localization of Fyn Kinase Activity in Single Live Cells.
    Huang Z; Ouyang M; Lu S; Wang Y; Peng Q
    J Mol Biol; 2020 Mar; 432(7):1901-1909. PubMed ID: 32198118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single-chain and fast-responding light-inducible Cre recombinase as a novel optogenetic switch.
    Duplus-Bottin H; Spichty M; Triqueneaux G; Place C; Mangeot PE; Ohlmann T; Vittoz F; Yvert G
    Elife; 2021 Feb; 10():. PubMed ID: 33620312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetics: A Primer for Chemists.
    O'Banion CP; Lawrence DS
    Chembiochem; 2018 Jun; 19(12):1201-1216. PubMed ID: 29671930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetic control with a photocleavable protein, PhoCl.
    Zhang W; Lohman AW; Zhuravlova Y; Lu X; Wiens MD; Hoi H; Yaganoglu S; Mohr MA; Kitova EN; Klassen JS; Pantazis P; Thompson RJ; Campbell RE
    Nat Methods; 2017 Apr; 14(4):391-394. PubMed ID: 28288123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Optogenetic Protein Analogs.
    Liu B; Marston DJ; Hahn KM
    Methods Mol Biol; 2020; 2173():113-126. PubMed ID: 32651913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational identification of post-translational modification-based nuclear import regulations by characterizing nuclear localization signal-import receptor interaction.
    Lin JR; Liu Z; Hu J
    Proteins; 2014 Oct; 82(10):2783-96. PubMed ID: 25043850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear Respiratory Factor 2β (NRF-2β) recruits NRF-2α to the nucleus by binding to importin-α:β via an unusual monopartite-type nuclear localization signal.
    Hayashi R; Takeuchi N; Ueda T
    J Mol Biol; 2013 Sep; 425(18):3536-48. PubMed ID: 23856623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural Resources for Optogenetic Tools.
    Mathes T
    Methods Mol Biol; 2016; 1408():19-36. PubMed ID: 26965113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photo-sensitive degron variants for tuning protein stability by light.
    Usherenko S; Stibbe H; Muscò M; Essen LO; Kostina EA; Taxis C
    BMC Syst Biol; 2014 Nov; 8():128. PubMed ID: 25403319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.