These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27258902)

  • 1. A comparison of fresh and used aircraft oil for the identification of toxic substances linked to aerotoxic syndrome.
    Megson D; Ortiz X; Jobst KJ; Reiner EJ; Mulder MF; Balouet JC
    Chemosphere; 2016 Sep; 158():116-23. PubMed ID: 27258902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of ortho-cresyl phosphate isomers of tricresyl phosphate used in aircraft turbine engine oils by gas chromatography and mass spectrometry.
    De Nola G; Kibby J; Mazurek W
    J Chromatogr A; 2008 Jul; 1200(2):211-6. PubMed ID: 18550071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of tricresyl phosphate air contamination in aircraft.
    Denola G; Hanhela PJ; Mazurek W
    Ann Occup Hyg; 2011 Aug; 55(7):710-22. PubMed ID: 21730359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tricresyl phosphate and the aerotoxic syndrome of flight crew members--current gaps in knowledge.
    de Boer J; Antelo A; van der Veen I; Brandsma S; Lammertse N
    Chemosphere; 2015 Jan; 119 Suppl():S58-61. PubMed ID: 24925093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the potential for transisomerisation of trycresyl phosphate with a palladium catalyst and its implications for aircraft cabin air quality.
    Megson D; Hajimirzaee S; Doyle A; Cannon F; Balouet JC
    Chemosphere; 2019 Jan; 215():532-534. PubMed ID: 30342398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Health risk assessment of exposure to TriCresyl Phosphates (TCPs) in aircraft: a commentary.
    de Ree H; van den Berg M; Brand T; Mulder GJ; Simons R; Veldhuijzen van Zanten B; Westerink RH
    Neurotoxicology; 2014 Dec; 45():209-15. PubMed ID: 25193069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of neurotoxic effects and potential risks from oral administration or ingestion of tricresyl phosphate and jet engine oil containing tricresyl phosphate.
    Mackerer CR; Barth ML; Krueger AJ; Chawla B; Roy TA
    J Toxicol Environ Health A; 1999 Jul; 57(5):293-328. PubMed ID: 10405186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Healthy F-16 pilots show no evidence of exposure to tri-ortho-cresyl phosphate through the on-board oxygen generating system.
    Tacal O; Schopfer LM
    Chem Biol Interact; 2014 May; 215():69-74. PubMed ID: 24661946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occupational exposure of air crews to tricresyl phosphate isomers and organophosphate flame retardants after fume events.
    Schindler BK; Weiss T; Schütze A; Koslitz S; Broding HC; Bünger J; Brüning T
    Arch Toxicol; 2013 Apr; 87(4):645-8. PubMed ID: 23179756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure to tri-o-cresyl phosphate detected in jet airplane passengers.
    Liyasova M; Li B; Schopfer LM; Nachon F; Masson P; Furlong CE; Lockridge O
    Toxicol Appl Pharmacol; 2011 Nov; 256(3):337-47. PubMed ID: 21723309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of cresyl phosphate-modified butyrylcholinesterase in human plasma for chemical exposure associated with aerotoxic syndrome.
    Schopfer LM; Masson P; Lamourette P; Simon S; Lockridge O
    Anal Biochem; 2014 Sep; 461():17-26. PubMed ID: 24892986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro neurotoxic hazard characterization of different tricresyl phosphate (TCP) isomers and mixtures.
    Duarte DJ; Rutten JMM; van den Berg M; Westerink RHS
    Neurotoxicology; 2017 Mar; 59():222-230. PubMed ID: 26851706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of nanoparticles in bleed air in the etiology of Aerotoxic Syndrome: A review of cabin air-quality studies of 2003-2023.
    Hageman G; van Broekhuizen P; Nihom J
    J Occup Environ Hyg; 2024; 21(6):423-438. PubMed ID: 38593380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the constituents of two jet engine lubricating oils and their volatile pyrolytic degradation products.
    van Netten C; Leung V
    Appl Occup Environ Hyg; 2000 Mar; 15(3):277-83. PubMed ID: 10701290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of airborne trialkyl and triaryl organophosphates originating from hydraulic fluids by gas chromatography-mass spectrometry. Development of methodology for combined aerosol and vapor sampling.
    Solbu K; Thorud S; Hersson M; Ovrebø S; Ellingsen DG; Lundanes E; Molander P
    J Chromatogr A; 2007 Aug; 1161(1-2):275-83. PubMed ID: 17574560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of tricresyl phosphates and determination of tri-o-cresyl phosphate in edible oils.
    Krishnamurthy MN; Rajalakshmi S; Kapur OP
    J Assoc Off Anal Chem; 1985; 68(6):1074-6. PubMed ID: 4086427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The toxicity of commercial jet oils.
    Winder C; Balouet JC
    Environ Res; 2002 Jun; 89(2):146-64. PubMed ID: 12123648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of neurotoxic effects of tri-cresyl phosphates (TCPs) and cresyl saligenin phosphate (CBDP) using a combination of in vitro techniques.
    Hausherr V; Schöbel N; Liebing J; van Thriel C
    Neurotoxicology; 2017 Mar; 59():210-221. PubMed ID: 27288108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ["Aerotoxic syndrome:" danger caused by hydraulic oil in aircraft?].
    Gross H
    Dtsch Med Wochenschr; 2010 May; 135(19):p18. PubMed ID: 20461667
    [No Abstract]   [Full Text] [Related]  

  • 20. Evaluation of the hazards of industrial exposure to tricresyl phosphate: a review and interpretation of the literature.
    Craig PH; Barth ML
    J Toxicol Environ Health B Crit Rev; 1999; 2(4):281-300. PubMed ID: 10596299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.