These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27258941)

  • 1. Nanoscale imaging and hydrophobicity mapping of the antimicrobial effect of copper on bacterial surfaces.
    Wang C; Ehrhardt CJ; Yadavalli VK
    Micron; 2016 Sep; 88():16-23. PubMed ID: 27258941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Observation of Antimicrobial Polycation Effects on Escherichia coli: Adapting the Carpet Model for Membrane Disruption to Quaternary Copolyoxetanes.
    Wang C; Zolotarskaya OY; Nair SS; Ehrhardt CJ; Ohman DE; Wynne KJ; Yadavalli VK
    Langmuir; 2016 Mar; 32(12):2975-84. PubMed ID: 26948099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the antimicrobial activity behind thin- and thick-rolled copper plates.
    Yousuf B; Ahire JJ; Dicks LM
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5569-80. PubMed ID: 26860943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the effect of polymyxin B antibiotics to lipopolysaccharide on Escherichia coli surface using atomic force microscopy.
    Oh YJ; Plochberger B; Rechberger M; Hinterdorfer P
    J Mol Recognit; 2017 Jun; 30(6):. PubMed ID: 28054415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale investigation on adhesion of E. coli to surface modified silicone using atomic force microscopy.
    Cao T; Tang H; Liang X; Wang A; Auner GW; Salley SO; Ng KY
    Biotechnol Bioeng; 2006 May; 94(1):167-76. PubMed ID: 16538682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities.
    Hahn C; Hans M; Hein C; Mancinelli RL; Mücklich F; Wirth R; Rettberg P; Hellweg CE; Moeller R
    Astrobiology; 2017 Dec; 17(12):1183-1191. PubMed ID: 29116818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic force microscopy study of the effect of antimicrobial peptides on the cell envelope of Escherichia coli.
    Meincken M; Holroyd DL; Rautenbach M
    Antimicrob Agents Chemother; 2005 Oct; 49(10):4085-92. PubMed ID: 16189084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy investigation of the characteristic effects of silver ions on Escherichia coli and Staphylococcus epidermidis.
    Yang X; Yang W; Wang Q; Li H; Wang K; Yang L; Liu W
    Talanta; 2010 Jun; 81(4-5):1508-12. PubMed ID: 20441931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilizing live Escherichia coli for AFM studies of surface dynamics.
    Lonergan NE; Britt LD; Sullivan CJ
    Ultramicroscopy; 2014 Feb; 137():30-9. PubMed ID: 24286980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale Profiling of 2D Surface Hydrophobicity Recognition of Environmental Media via AFM Measurements In Situ.
    Zhang Y; Zhu X; Chen B
    Environ Sci Technol; 2020 Aug; 54(15):9315-9324. PubMed ID: 32633943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid in situ assessment of Cu-ion mediated effects and antibacterial efficacy of copper surfaces.
    Rosenberg M; Vija H; Kahru A; Keevil CW; Ivask A
    Sci Rep; 2018 May; 8(1):8172. PubMed ID: 29802355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green synthesis of rifampicin-loaded copper nanoparticles with enhanced antimicrobial activity.
    Woźniak-Budych MJ; Przysiecka Ł; Langer K; Peplińska B; Jarek M; Wiesner M; Nowaczyk G; Jurga S
    J Mater Sci Mater Med; 2017 Mar; 28(3):42. PubMed ID: 28150115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of antibacterial agents and drugs monitored by atomic force microscopy.
    Longo G; Kasas S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(3):230-44. PubMed ID: 24616433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial nanoscopy: a closer look at microbial cell surfaces.
    Dupres V; Alsteens D; Andre G; Dufrêne YF
    Trends Microbiol; 2010 Sep; 18(9):397-405. PubMed ID: 20630762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus.
    Eaton P; Fernandes JC; Pereira E; Pintado ME; Xavier Malcata F
    Ultramicroscopy; 2008 Sep; 108(10):1128-34. PubMed ID: 18556125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards a nanoscale view of fungal surfaces.
    Dague E; Gilbert Y; Verbelen C; Andre G; Alsteens D; Dufrêne YF
    Yeast; 2007 Apr; 24(4):229-37. PubMed ID: 17230582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity.
    Dorobantu LS; Bhattacharjee S; Foght JM; Gray MR
    Langmuir; 2008 May; 24(9):4944-51. PubMed ID: 18355095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope.
    Van Der Hofstadt M; Hüttener M; Juárez A; Gomila G
    Ultramicroscopy; 2015 Jul; 154():29-36. PubMed ID: 25791909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical force microscopy of single live cells.
    Dague E; Alsteens D; Latgé JP; Verbelen C; Raze D; Baulard AR; Dufrêne YF
    Nano Lett; 2007 Oct; 7(10):3026-30. PubMed ID: 17850167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomaterial with high antimicrobial efficacy--copper/polyaniline nanocomposite.
    Bogdanović U; Vodnik V; Mitrić M; Dimitrijević S; Škapin SD; Žunič V; Budimir M; Stoiljković M
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1955-66. PubMed ID: 25552193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.