These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 27259497)

  • 1. A Model of Cadmium Uptake and Transport in Caco-2 Cells.
    Gerasimenko TN; Senyavina NV; Anisimov NU; Tonevitskaya SA
    Bull Exp Biol Med; 2016 May; 161(1):187-92. PubMed ID: 27259497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells.
    Fujishiro H; Yano Y; Takada Y; Tanihara M; Himeno S
    Metallomics; 2012 Jul; 4(7):700-8. PubMed ID: 22534978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concentration-dependent roles of DMT1 and ZIP14 in cadmium absorption in Caco-2 cells.
    Fujishiro H; Hamao S; Tanaka R; Kambe T; Himeno S
    J Toxicol Sci; 2017; 42(5):559-567. PubMed ID: 28904291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium transporters in the kidney and cadmium-induced nephrotoxicity.
    Yang H; Shu Y
    Int J Mol Sci; 2015 Jan; 16(1):1484-94. PubMed ID: 25584611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of DMT1 knockdown on iron, cadmium, and lead uptake in Caco-2 cells.
    Bannon DI; Abounader R; Lees PS; Bressler JP
    Am J Physiol Cell Physiol; 2003 Jan; 284(1):C44-50. PubMed ID: 12388109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human placental cell line HTR-8/SVneo accumulates cadmium by divalent metal transporters DMT1 and ZIP14.
    Widhalm R; Ellinger I; Granitzer S; Forsthuber M; Bajtela R; Gelles K; Hartig PY; Hengstschläger M; Zeisler H; Salzer H; Gundacker C
    Metallomics; 2020 Nov; 12(11):1822-1833. PubMed ID: 33146651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of zinc transporters in cadmium and manganese transport in mammalian cells.
    Himeno S; Yanagiya T; Fujishiro H
    Biochimie; 2009 Oct; 91(10):1218-22. PubMed ID: 19375483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium uptake and transepithelial transport in control and long-term exposed Caco-2 cells: the role of metallothionein.
    Blais A; Lecoeur S; Milhaud G; Tomé D; Kolf-Clauw M
    Toxicol Appl Pharmacol; 1999 Oct; 160(1):76-85. PubMed ID: 10502504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The intestinal metal transporter ZIP14 maintains systemic manganese homeostasis.
    Scheiber IF; Wu Y; Morgan SE; Zhao N
    J Biol Chem; 2019 Jun; 294(23):9147-9160. PubMed ID: 31028174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implication of distinct proteins in cadmium uptake and transport by intestinal cells HT-29.
    Lecoeur S; Huynh-Delerme C; Blais A; Duché A; Tomé D; Kolf-Clauw M
    Cell Biol Toxicol; 2002; 18(6):409-23. PubMed ID: 12484551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential transcytosis and toxicity of the hNGAL receptor ligands cadmium-metallothionein and cadmium-phytochelatin in colon-like Caco-2 cells: implications for in vivo cadmium toxicity.
    Langelueddecke C; Lee WK; Thévenod F
    Toxicol Lett; 2014 Apr; 226(2):228-35. PubMed ID: 24518829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular cadmium uptake mediated by the transport system for manganese.
    Himeno S; Yanagiya T; Enomoto S; Kondo Y; Imura N
    Tohoku J Exp Med; 2002 Jan; 196(1):43-50. PubMed ID: 12498325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium is a noncompetitive inhibitor of DMT1 on the intestinal iron absorption process: empirical evidence and mathematical modeling analysis.
    Cegarra L; Aguirre P; Nuñez MT; Gerdtzen ZP; Salgado JC
    Am J Physiol Cell Physiol; 2022 Dec; 323(6):C1791-C1806. PubMed ID: 36342159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Participation of divalent cation transporter DMT1 in the uptake of inorganic mercury.
    Vázquez M; Vélez D; Devesa V; Puig S
    Toxicology; 2015 May; 331():119-24. PubMed ID: 25772431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper repletion enhances apical iron uptake and transepithelial iron transport by Caco-2 cells.
    Han O; Wessling-Resnick M
    Am J Physiol Gastrointest Liver Physiol; 2002 Mar; 282(3):G527-33. PubMed ID: 11842003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of cadmium uptake in human intestinal crypt cells HIEC in relation to inorganic metal speciation.
    Bergeron PM; Jumarie C
    Toxicology; 2006 Feb; 219(1-3):156-66. PubMed ID: 16361035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of manganese transport and gene expressions of manganese transport carriers in Caco-2 cell monolayers.
    Li X; Xie J; Lu L; Zhang L; Zhang L; Zou Y; Wang Q; Luo X; Li S
    Biometals; 2013 Dec; 26(6):941-53. PubMed ID: 23996061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of cadmium transport pathways using the Caco-2 cell model.
    Pigman EA; Blanchard J; Laird HE
    Toxicol Appl Pharmacol; 1997 Feb; 142(2):243-7. PubMed ID: 9070345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of a high-affinity transport system for manganese in cadmium-resistant metallothionein-null cells.
    Yanagiya T; Imura N; Enomoto S; Kondo Y; Himeno S
    J Pharmacol Exp Ther; 2000 Mar; 292(3):1080-6. PubMed ID: 10688626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Four cation-selective transporters contribute to apical uptake and accumulation of metformin in Caco-2 cell monolayers.
    Han TK; Proctor WR; Costales CL; Cai H; Everett RS; Thakker DR
    J Pharmacol Exp Ther; 2015 Mar; 352(3):519-28. PubMed ID: 25563903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.