BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 27259687)

  • 1. Flexibility and Stability Trade-Off in Active Site of Cold-Adapted Pseudomonas mandelii Esterase EstK.
    Truongvan N; Jang SH; Lee C
    Biochemistry; 2016 Jun; 55(25):3542-9. PubMed ID: 27259687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced catalytic site thermal stability of cold-adapted esterase EstK by a W208Y mutation.
    Boyineni J; Kim J; Kang BS; Lee C; Jang SH
    Biochim Biophys Acta; 2014 Jun; 1844(6):1076-82. PubMed ID: 24667115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved tyrosine 182 residue in hyperthermophilic esterase EstE1 plays a critical role in stabilizing the active site.
    Truongvan N; Chung HS; Jang SH; Lee C
    Extremophiles; 2016 Mar; 20(2):187-93. PubMed ID: 26838013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and properties of an extracellular esterase from a cold-adapted Pseudomonas mandelii.
    Hong S; Lee C; Jang SH
    Biotechnol Lett; 2012 Jun; 34(6):1051-5. PubMed ID: 22315100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning, expression, and characterization of a recombinant esterase from cold-adapted Pseudomonas mandelii.
    Lee C; Kim J; Hong S; Goo B; Lee S; Jang SH
    Appl Biochem Biotechnol; 2013 Jan; 169(1):29-40. PubMed ID: 23117417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a cold-adapted esterase and mutants from a psychotolerant Pseudomonas sp. strain.
    Dong J; Gasmalla MAA; Zhao W; Sun J; Liu W; Wang M; Han L; Yang R
    Biotechnol Appl Biochem; 2017 Sep; 64(5):686-699. PubMed ID: 27405585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased thermal stability of cold-adapted esterase at ambient temperatures by immobilization on graphene oxide.
    Lee H; Jeong HK; Han J; Chung HS; Jang SH; Lee C
    Bioresour Technol; 2013 Nov; 148():620-3. PubMed ID: 24080443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold-active esterase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly-->Pro substitution near the active site on its catalytic activity and stability.
    Kulakova L; Galkin A; Nakayama T; Nishino T; Esaki N
    Biochim Biophys Acta; 2004 Jan; 1696(1):59-65. PubMed ID: 14726205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of active-site aromatic residues Tyr or Phe on activity and stability of glucose 6-phosphate dehydrogenase from psychrophilic Arctic bacterium Sphingomonas sp.
    Tran KN; Jang SH; Lee C
    Biochim Biophys Acta Proteins Proteom; 2021 Jan; 1869(1):140543. PubMed ID: 32966894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct roles of an ionic interaction holding an alpha-helix with catalytic Asp and a beta-strand with catalytic His in a hyperthermophilic esterase EstE1 and a mesophilic esterase rPPE.
    Dachuri V; Truongvan N; DangThu Q; Jang SH; Lee C
    Extremophiles; 2019 Nov; 23(6):649-657. PubMed ID: 31332517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-activity relationship of a cold-adapted purine nucleoside phosphorylase by site-directed mutagenesis.
    Xie X; Huo W; Xia J; Xu Q; Chen N
    Enzyme Microb Technol; 2012 Jun; 51(1):59-65. PubMed ID: 22579392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural features of a cold-adapted Alaskan bacterial lipase.
    Roy D; Sengupta S
    J Biomol Struct Dyn; 2007 Apr; 24(5):463-70. PubMed ID: 17313191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp. YM55-1.
    Puthan Veetil V; Raj H; Quax WJ; Janssen DB; Poelarends GJ
    FEBS J; 2009 Jun; 276(11):2994-3007. PubMed ID: 19490103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu.
    Tran TT; Mamo G; Búxo L; Le NN; Gaber Y; Mattiasson B; Hatti-Kaul R
    Enzyme Microb Technol; 2011 Jul; 49(2):177-82. PubMed ID: 22112406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bacterial acyl aminoacyl peptidase couples flexibility and stability as a result of cold adaptation.
    Brocca S; Ferrari C; Barbiroli A; Pesce A; Lotti M; Nardini M
    FEBS J; 2016 Dec; 283(23):4310-4324. PubMed ID: 27739253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of a unique halide-stabilizing residue on the catalytic properties of haloalkane dehalogenase DatA from Agrobacterium tumefaciens C58.
    Hasan K; Gora A; Brezovsky J; Chaloupkova R; Moskalikova H; Fortova A; Nagata Y; Damborsky J; Prokop Z
    FEBS J; 2013 Jul; 280(13):3149-59. PubMed ID: 23490078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the catalytic efficiency and substrate affinity of a novel esterase from marine Klebsiella aerogenes by random and site-directed mutation.
    Gao H; Zhu R; Li Z; Wang W; Liu Z; Hu N
    World J Microbiol Biotechnol; 2021 May; 37(6):106. PubMed ID: 34037848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The high catalytic rate of the cold-active Vibrio alkaline phosphatase requires a hydrogen bonding network involving a large interface loop.
    Hjörleifsson JG; Helland R; Magnúsdóttir M; Ásgeirsson B
    FEBS Open Bio; 2021 Jan; 11(1):173-184. PubMed ID: 33197282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutational analysis and stability characterization of a novel esterase of lipolytic enzyme family VI from Shewanella sp.
    Hang Y; Ran S; Wang X; Jiao J; Wang S; Liu Z
    Int J Biol Macromol; 2016 Dec; 93(Pt A):655-664. PubMed ID: 27632949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability for function trade-offs in the enolase superfamily "catalytic module".
    Nagatani RA; Gonzalez A; Shoichet BK; Brinen LS; Babbitt PC
    Biochemistry; 2007 Jun; 46(23):6688-95. PubMed ID: 17503785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.