BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27260837)

  • 1. Cognitive deficits triggered by early life stress: The role of histone deacetylase 1.
    Adler SM; Schmauss C
    Neurobiol Dis; 2016 Oct; 94():1-9. PubMed ID: 27260837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lasting effects of early life stress in mice: interaction of maternal environment and infant genes.
    Feifel AJ; Shair HN; Schmauss C
    Genes Brain Behav; 2017 Nov; 16(8):768-780. PubMed ID: 28557378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Downregulation of TrkB Expression and Signaling by Valproic Acid and Other Histone Deacetylase Inhibitors.
    Dedoni S; Marras L; Olianas MC; Ingianni A; Onali P
    J Pharmacol Exp Ther; 2019 Sep; 370(3):490-503. PubMed ID: 31308194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Irradiation-induced hippocampal neurogenesis impairment is associated with epigenetic regulation of bdnf gene transcription.
    Ji S; Tian Y; Lu Y; Sun R; Ji J; Zhang L; Duan S
    Brain Res; 2014 Aug; 1577():77-88. PubMed ID: 25020123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential regulation of Bdnf expression in cortical neurons by class-selective histone deacetylase inhibitors.
    Koppel I; Timmusk T
    Neuropharmacology; 2013 Dec; 75():106-15. PubMed ID: 23916482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Class I histone deacetylase inhibitor valproic acid reverses cognitive deficits in a mouse model of septic encephalopathy.
    Wu J; Dong L; Zhang M; Jia M; Zhang G; Qiu L; Ji M; Yang J
    Neurochem Res; 2013 Nov; 38(11):2440-9. PubMed ID: 24072674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual influences of early-life maternal deprivation on histone deacetylase activity and recognition memory in rats.
    Albuquerque Filho MO; de Freitas BS; Garcia RC; Crivelaro PC; Schröder N; de Lima MN
    Neuroscience; 2017 Mar; 344():360-370. PubMed ID: 28089578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone deacetylase inhibitor, trichostatin A, improves learning and memory in high-fat diet-induced cognitive deficits in mice.
    Sharma S; Taliyan R; Ramagiri S
    J Mol Neurosci; 2015 May; 56(1):1-11. PubMed ID: 25391764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain-specific cognitive deficits in adult mice exposed to early life stress.
    Mehta M; Schmauss C
    Behav Neurosci; 2011 Feb; 125(1):29-36. PubMed ID: 21319884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repetitive transcranial magnetic stimulation (rTMS) influences spatial cognition and modulates hippocampal structural synaptic plasticity in aging mice.
    Ma J; Zhang Z; Kang L; Geng D; Wang Y; Wang M; Cui H
    Exp Gerontol; 2014 Oct; 58():256-68. PubMed ID: 25172625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone Deacetylases May Mediate Surgery-Induced Impairment of Learning, Memory, and Dendritic Development.
    Luo F; Min J; Wu J; Zuo Z
    Mol Neurobiol; 2020 Sep; 57(9):3702-3711. PubMed ID: 32564283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An HDAC-dependent epigenetic mechanism that enhances the efficacy of the antidepressant drug fluoxetine.
    Schmauss C
    Sci Rep; 2015 Feb; 5():8171. PubMed ID: 25639887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HDAC1 links early life stress to schizophrenia-like phenotypes.
    Bahari-Javan S; Varbanov H; Halder R; Benito E; Kaurani L; Burkhardt S; Anderson-Schmidt H; Anghelescu I; Budde M; Stilling RM; Costa J; Medina J; Dietrich DE; Figge C; Folkerts H; Gade K; Heilbronner U; Koller M; Konrad C; Nussbeck SY; Scherk H; Spitzer C; Stierl S; Stöckel J; Thiel A; von Hagen M; Zimmermann J; Zitzelsberger A; Schulz S; Schmitt A; Delalle I; Falkai P; Schulze TG; Dityatev A; Sananbenesi F; Fischer A
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):E4686-E4694. PubMed ID: 28533418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual experience dependent regulation of neuronal structure and function by histone deacetylase 1 in developing Xenopus tectum in vivo.
    Ruan H; Gao J; Qi X; Tao Y; Guo X; Guo Z; Zheng L; Song Y; Liao Y; Shen W
    Dev Neurobiol; 2017 Sep; 77(8):947-962. PubMed ID: 28033671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HDAC1 negatively regulates Bdnf and Pvalb required for parvalbumin interneuron maturation in an experience-dependent manner.
    Koh DX; Sng JC
    J Neurochem; 2016 Nov; 139(3):369-380. PubMed ID: 27534825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brainstem brain-derived neurotrophic factor signaling is required for histone deacetylase inhibitor-induced pain relief.
    Tao W; Chen Q; Wang L; Zhou W; Wang Y; Zhang Z
    Mol Pharmacol; 2015 Jun; 87(6):1035-41. PubMed ID: 25852071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-derived neurotrophic factor modulates the severity of cognitive alterations induced by mutant huntingtin: involvement of phospholipaseCgamma activity and glutamate receptor expression.
    Giralt A; Rodrigo T; Martín ED; Gonzalez JR; Milà M; Ceña V; Dierssen M; Canals JM; Alberch J
    Neuroscience; 2009 Feb; 158(4):1234-50. PubMed ID: 19121372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of class I histone deacetylases blunts cardiac hypertrophy through TSC2-dependent mTOR repression.
    Morales CR; Li DL; Pedrozo Z; May HI; Jiang N; Kyrychenko V; Cho GW; Kim SY; Wang ZV; Rotter D; Rothermel BA; Schneider JW; Lavandero S; Gillette TG; Hill JA
    Sci Signal; 2016 Apr; 9(422):ra34. PubMed ID: 27048565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ginsenoside Reduces Cognitive Impairment During Chronic Cerebral Hypoperfusion Through Brain-Derived Neurotrophic Factor Regulated by Epigenetic Modulation.
    Wan Q; Ma X; Zhang ZJ; Sun T; Xia F; Zhao G; Wu YM
    Mol Neurobiol; 2017 May; 54(4):2889-2900. PubMed ID: 27021024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical exercise and acute restraint stress differentially modulate hippocampal brain-derived neurotrophic factor transcripts and epigenetic mechanisms in mice.
    Ieraci A; Mallei A; Musazzi L; Popoli M
    Hippocampus; 2015 Nov; 25(11):1380-92. PubMed ID: 25820928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.