BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 27261087)

  • 1. RubisCO selection using the vigorously aerobic and metabolically versatile bacterium Ralstonia eutropha.
    Satagopan S; Tabita FR
    FEBS J; 2016 Aug; 283(15):2869-80. PubMed ID: 27261087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the Calvin-Benson-Bassham cycle and hydrogen utilization pathway of Ralstonia eutropha for improved autotrophic growth and polyhydroxybutyrate production.
    Li Z; Xin X; Xiong B; Zhao D; Zhang X; Bi C
    Microb Cell Fact; 2020 Dec; 19(1):228. PubMed ID: 33308236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection of Cyanobacterial (
    Satagopan S; Huening KA; Tabita FR
    mBio; 2019 Jul; 10(4):. PubMed ID: 31337726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogeny and functional expression of ribulose 1,5-bisphosphate carboxylase/oxygenase from the autotrophic ammonia-oxidizing bacterium Nitrosospira sp. isolate 40KI.
    Utåker JB; Andersen K; Aakra A; Moen B; Nes IF
    J Bacteriol; 2002 Jan; 184(2):468-78. PubMed ID: 11751824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of phase-dependent transcriptomic changes and Rubisco-mediated CO2 fixation into poly (3-hydroxybutyrate) under heterotrophic condition in Ralstonia eutropha H16 based on RNA-seq and gene deletion analyses.
    Shimizu R; Chou K; Orita I; Suzuki Y; Nakamura S; Fukui T
    BMC Microbiol; 2013 Jul; 13():169. PubMed ID: 23879744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Perturbations of
    Satagopan S; North JA; Arbing MA; Varaljay VA; Haines SN; Wildenthal JA; Byerly KM; Shin A; Tabita FR
    Biochemistry; 2019 Sep; 58(37):3880-3892. PubMed ID: 31456394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isotope discrimination by form IC RubisCO from Ralstonia eutropha and Rhodobacter sphaeroides, metabolically versatile members of 'Proteobacteria' from aquatic and soil habitats.
    Thomas PJ; Boller AJ; Satagopan S; Tabita FR; Cavanaugh CM; Scott KM
    Environ Microbiol; 2019 Jan; 21(1):72-80. PubMed ID: 30246324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reliance of glycerol utilization by Cupriavidus necator on CO
    Strittmatter CS; Eggers J; Biesgen V; Pauels I; Becker F; Steinbüchel A
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2541-2555. PubMed ID: 35325274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of Rhodospirillum rubrum.
    Falcone DL; Tabita FR
    J Bacteriol; 1993 Aug; 175(16):5066-77. PubMed ID: 8349547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rubisco Function, Evolution, and Engineering.
    Prywes N; Phillips NR; Tuck OT; Valentin-Alvarado LE; Savage DF
    Annu Rev Biochem; 2023 Jun; 92():385-410. PubMed ID: 37127263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A RuBisCO-mediated carbon metabolic pathway in methanogenic archaea.
    Kono T; Mehrotra S; Endo C; Kizu N; Matusda M; Kimura H; Mizohata E; Inoue T; Hasunuma T; Yokota A; Matsumura H; Ashida H
    Nat Commun; 2017 Jan; 8():14007. PubMed ID: 28082747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Rubisco mutant that confers growth under a normally "inhibitory" oxygen concentration.
    Satagopan S; Scott SS; Smith TG; Tabita FR
    Biochemistry; 2009 Sep; 48(38):9076-83. PubMed ID: 19705820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of the cbb operon (CO2 assimilation) promoter of Ralstonia eutropha.
    Jeffke T; Gropp NH; Kaiser C; Grzeszik C; Kusian B; Bowien B
    J Bacteriol; 1999 Jul; 181(14):4374-80. PubMed ID: 10400596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein allocation and utilization in the versatile chemolithoautotroph
    Jahn M; Crang N; Janasch M; Hober A; Forsström B; Kimler K; Mattausch A; Chen Q; Asplund-Samuelsson J; Hudson EP
    Elife; 2021 Nov; 10():. PubMed ID: 34723797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of Oxygenase-Pathway Reactions Catalyzed by Rubisco from Large-Scale Kohn-Sham Density Functional Calculations.
    Kannappan B; Cummins PL; Gready JE
    J Phys Chem B; 2019 Apr; 123(13):2833-2843. PubMed ID: 30845802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed evolution of rubisco in Escherichia coli reveals a specificity-determining hydrogen bond in the form II enzyme.
    Mueller-Cajar O; Morell M; Whitney SM
    Biochemistry; 2007 Dec; 46(49):14067-74. PubMed ID: 18004873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and activity of the Calvin-Benson-Bassham cycle transcriptional regulator CbbR from Acidithiobacillus ferrooxidans in Ralstonia eutropha.
    Esparza M; Jedlicki E; Dopson M; Holmes DS
    FEMS Microbiol Lett; 2015 Aug; 362(15):fnv108. PubMed ID: 26152700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO2-responsive expression and gene organization of three ribulose-1,5-bisphosphate carboxylase/oxygenase enzymes and carboxysomes in Hydrogenovibrio marinus strain MH-110.
    Yoshizawa Y; Toyoda K; Arai H; Ishii M; Igarashi Y
    J Bacteriol; 2004 Sep; 186(17):5685-91. PubMed ID: 15317772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unique structural domain in
    Gunn LH; Valegård K; Andersson I
    J Biol Chem; 2017 Apr; 292(16):6838-6850. PubMed ID: 28154188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E.coli.
    Parikh MR; Greene DN; Woods KK; Matsumura I
    Protein Eng Des Sel; 2006 Mar; 19(3):113-9. PubMed ID: 16423843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.