BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 27261162)

  • 1. Detection of functional brain network reconfiguration during task-driven cognitive states.
    Telesford QK; Lynall ME; Vettel J; Miller MB; Grafton ST; Bassett DS
    Neuroimage; 2016 Nov; 142():198-210. PubMed ID: 27261162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity.
    Liljeström M; Stevenson C; Kujala J; Salmelin R
    Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the relationship between instantaneous phase synchrony and correlation-based sliding windows for time-resolved fMRI connectivity analysis.
    Pedersen M; Omidvarnia A; Zalesky A; Jackson GD
    Neuroimage; 2018 Nov; 181():85-94. PubMed ID: 29890326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets.
    Yoo K; Rosenberg MD; Hsu WT; Zhang S; Li CR; Scheinost D; Constable RT; Chun MM
    Neuroimage; 2018 Feb; 167():11-22. PubMed ID: 29122720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sliding window correlation analysis: Modulating window shape for dynamic brain connectivity in resting state.
    Mokhtari F; Akhlaghi MI; Simpson SL; Wu G; Laurienti PJ
    Neuroimage; 2019 Apr; 189():655-666. PubMed ID: 30721750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Functional Segregation and Integration in Human Brain Network During Complex Tasks.
    Shen Ren ; Junhua Li ; Taya F; deSouza J; Thakor NV; Bezerianos A
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):547-556. PubMed ID: 28113670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilayer network switching rate predicts brain performance.
    Pedersen M; Zalesky A; Omidvarnia A; Jackson GD
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):13376-13381. PubMed ID: 30545918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain network interactions in auditory, visual and linguistic processing.
    Horwitz B; Braun AR
    Brain Lang; 2004 May; 89(2):377-84. PubMed ID: 15068921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic coherence analysis of resting fMRI data to jointly capture state-based phase, frequency, and time-domain information.
    Yaesoubi M; Allen EA; Miller RL; Calhoun VD
    Neuroimage; 2015 Oct; 120():133-42. PubMed ID: 26162552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct and distributed functional connectivity patterns across cortex reflect the domain-specific constraints of object, face, scene, body, and tool category-selective modules in the ventral visual pathway.
    Hutchison RM; Culham JC; Everling S; Flanagan JR; Gallivan JP
    Neuroimage; 2014 Aug; 96():216-36. PubMed ID: 24699018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow-5 dynamic functional connectivity reflects the capacity to sustain cognitive performance during pain.
    Cheng JC; Bosma RL; Hemington KS; Kucyi A; Lindquist MA; Davis KD
    Neuroimage; 2017 Aug; 157():61-68. PubMed ID: 28583880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-dependent changes in task-based modular organization of the human brain.
    Schlesinger KJ; Turner BO; Lopez BA; Miller MB; Carlson JM
    Neuroimage; 2017 Feb; 146():741-762. PubMed ID: 27596025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying Differences Between Passive and Task-Evoked Intrinsic Functional Connectivity in a Large-Scale Brain Simulation.
    Ulloa A; Horwitz B
    Brain Connect; 2018 Dec; 8(10):637-652. PubMed ID: 30430844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The functional topography and temporal dynamics of overlapping and distinct brain activations for adaptive task control and stable task-set maintenance during performance of an fMRI-adapted clinical continuous performance test.
    Olsen A; Ferenc Brunner J; Evensen KA; Garzon B; Landrø NI; Håberg AK
    J Cogn Neurosci; 2013 Jun; 25(6):903-19. PubMed ID: 23363414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-dependence of graph theory metrics in functional connectivity analysis.
    Chiang S; Cassese A; Guindani M; Vannucci M; Yeh HJ; Haneef Z; Stern JM
    Neuroimage; 2016 Jan; 125():601-615. PubMed ID: 26518632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies.
    Fong AHC; Yoo K; Rosenberg MD; Zhang S; Li CR; Scheinost D; Constable RT; Chun MM
    Neuroimage; 2019 Mar; 188():14-25. PubMed ID: 30521950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Both activated and less-activated regions identified by functional MRI reconfigure to support task executions.
    Zuo N; Yang Z; Liu Y; Li J; Jiang T
    Brain Behav; 2018 Jan; 8(1):e00893. PubMed ID: 29568689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How do parcellation size and short-range connectivity affect dynamics in large-scale brain network models?
    Proix T; Spiegler A; Schirner M; Rothmeier S; Ritter P; Jirsa VK
    Neuroimage; 2016 Nov; 142():135-149. PubMed ID: 27480624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new algorithm for spatiotemporal analysis of brain functional connectivity.
    Mheich A; Hassan M; Khalil M; Berrou C; Wendling F
    J Neurosci Methods; 2015 Mar; 242():77-81. PubMed ID: 25583381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous ASL perfusion fMRI investigation of higher cognition: quantification of tonic CBF changes during sustained attention and working memory tasks.
    Kim J; Whyte J; Wang J; Rao H; Tang KZ; Detre JA
    Neuroimage; 2006 May; 31(1):376-85. PubMed ID: 16427324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.