BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 27261259)

  • 1. Crystal Structure of the Wild-Type Human GlyRS Bound with tRNA(Gly) in a Productive Conformation.
    Qin X; Deng X; Chen L; Xie W
    J Mol Biol; 2016 Sep; 428(18):3603-14. PubMed ID: 27261259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cocrystal structures of glycyl-tRNA synthetase in complex with tRNA suggest multiple conformational states in glycylation.
    Qin X; Hao Z; Tian Q; Zhang Z; Zhou C; Xie W
    J Biol Chem; 2014 Jul; 289(29):20359-69. PubMed ID: 24898252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large Conformational Changes of Insertion 3 in Human Glycyl-tRNA Synthetase (hGlyRS) during Catalysis.
    Deng X; Qin X; Chen L; Jia Q; Zhang Y; Zhang Z; Lei D; Ren G; Zhou Z; Wang Z; Li Q; Xie W
    J Biol Chem; 2016 Mar; 291(11):5740-5752. PubMed ID: 26797133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The crystal structure of a Thermus thermophilus tRNA(Gly) acceptor stem microhelix at 1.6 Å resolution.
    Oberthür D; Eichert A; Erdmann VA; Fürste JP; Betzel Ch; Förster C
    Biochem Biophys Res Commun; 2011 Jan; 404(1):245-9. PubMed ID: 21114959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine.
    Arnez JG; Dock-Bregeon AC; Moras D
    J Mol Biol; 1999 Mar; 286(5):1449-59. PubMed ID: 10064708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycyl-tRNA synthetase from Nanoarchaeum equitans: The first crystal structure of archaeal GlyRS and analysis of its tRNA glycylation.
    Fujisawa A; Toki R; Miyake H; Shoji T; Doi H; Hayashi H; Hanabusa R; Mutsuro-Aoki H; Umehara T; Ando T; Noguchi H; Voet A; Park SY; Tamura K
    Biochem Biophys Res Commun; 2019 Apr; 511(2):228-233. PubMed ID: 30771900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of tRNA(Gly) by three widely diverged glycyl-tRNA synthetases: evolution of tRNA recognition.
    Nameki N; Tamura K; Asahara H; Hasegawa T
    Nucleic Acids Symp Ser; 1997; (37):123-4. PubMed ID: 9586030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycyl-tRNA synthetase from Thermus thermophilus--wide structural divergence with other prokaryotic glycyl-tRNA synthetases and functional inter-relation with prokaryotic and eukaryotic glycylation systems.
    Mazauric MH; Keith G; Logan D; Kreutzer R; Giegé R; Kern D
    Eur J Biochem; 1998 Feb; 251(3):744-57. PubMed ID: 9490048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative X-ray structure analysis of human and Escherichia coli tRNA(Gly) acceptor stem microhelices.
    Förster C; Zerressen-Harte A; Fürste JP; Perbandt M; Betzel Ch; Erdmann VA
    Biochem Biophys Res Commun; 2008 Apr; 368(4):1002-6. PubMed ID: 18275849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An example of non-conservation of oligomeric structure in prokaryotic aminoacyl-tRNA synthetases. Biochemical and structural properties of glycyl-tRNA synthetase from Thermus thermophilus.
    Mazauric MH; Reinbolt J; Lorber B; Ebel C; Keith G; Giegé R; Kern D
    Eur J Biochem; 1996 Nov; 241(3):814-26. PubMed ID: 8944770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycyl-tRNA synthetase.
    Freist W; Logan DT; Gauss DH
    Biol Chem Hoppe Seyler; 1996 Jun; 377(6):343-56. PubMed ID: 8839980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of a human tRNA(Gly) microhelix at 1.2A resolution.
    Förster C; Mankowska M; Fürste JP; Perbandt M; Betzel Ch; Erdmann VA
    Biochem Biophys Res Commun; 2008 Apr; 368(4):996-1001. PubMed ID: 18279665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures and biochemical analyses suggest a unique mechanism and role for human glycyl-tRNA synthetase in Ap4A homeostasis.
    Guo RT; Chong YE; Guo M; Yang XL
    J Biol Chem; 2009 Oct; 284(42):28968-76. PubMed ID: 19710017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of tRNA(Gly) by three widely diverged glycyl-tRNA synthetases.
    Nameki N; Tamura K; Asahara H; Hasegawa T
    J Mol Biol; 1997 May; 268(3):640-7. PubMed ID: 9171287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Insights into the Polyphyletic Origins of Glycyl tRNA Synthetases.
    Valencia-Sánchez MI; Rodríguez-Hernández A; Ferreira R; Santamaría-Suárez HA; Arciniega M; Dock-Bregeon AC; Moras D; Beinsteiner B; Mertens H; Svergun D; Brieba LG; Grøtli M; Torres-Larios A
    J Biol Chem; 2016 Jul; 291(28):14430-46. PubMed ID: 27226617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition sites of glycine tRNA for glycyl-tRNA synthetase from hyperthermophilic archaeon, Aeropyrum pernix K1.
    Okamoto K; Kuno A; Hasegawa T
    Nucleic Acids Symp Ser (Oxf); 2005; (49):299-300. PubMed ID: 17150752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. tRNA glycylation system from Thermus thermophilus. tRNAGly identity and functional interrelation with the glycylation systems from other phylae.
    Mazauric MH; Roy H; Kern D
    Biochemistry; 1999 Oct; 38(40):13094-105. PubMed ID: 10529180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of tRNA recognition by heterotetrameric glycyl-tRNA synthetase from lactic acid bacteria.
    Nagato Y; Yamashita S; Ohashi A; Furukawa H; Takai K; Tomita K; Tomikawa C
    J Biochem; 2023 Jul; 174(3):291-303. PubMed ID: 37261968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overlapping nucleotide determinants for specific aminoacylation of RNA microhelices.
    Francklyn C; Shi JP; Schimmel P
    Science; 1992 Feb; 255(5048):1121-5. PubMed ID: 1546312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of an Escherichia coli tRNA(Gly) microhelix at 2.0 A resolution.
    Förster C; Brauer AB; Perbandt M; Lehmann D; Fürste JP; Betzel Ch; Erdmann VA
    Biochem Biophys Res Commun; 2007 Nov; 363(3):621-5. PubMed ID: 17888869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.