These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Cardiac hypertrophy in the newborn delays the maturation of fatty acid β-oxidation and compromises postischemic functional recovery. Oka T; Lam VH; Zhang L; Keung W; Cadete VJ; Samokhvalov V; Tanner BA; Beker DL; Ussher JR; Huqi A; Jaswal JS; Rebeyka IM; Lopaschuk GD Am J Physiol Heart Circ Physiol; 2012 May; 302(9):H1784-94. PubMed ID: 22408020 [TBL] [Abstract][Full Text] [Related]
6. Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression. Amorim PA; Nguyen TD; Shingu Y; Schwarzer M; Mohr FW; Schrepper A; Doenst T J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1160-7. PubMed ID: 20850803 [TBL] [Abstract][Full Text] [Related]
7. The transcriptional coactivator PGC-1alpha is essential for maximal and efficient cardiac mitochondrial fatty acid oxidation and lipid homeostasis. Lehman JJ; Boudina S; Banke NH; Sambandam N; Han X; Young DM; Leone TC; Gross RW; Lewandowski ED; Abel ED; Kelly DP Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H185-96. PubMed ID: 18487436 [TBL] [Abstract][Full Text] [Related]
8. The protein acetylase GCN5L1 modulates hepatic fatty acid oxidation activity via acetylation of the mitochondrial β-oxidation enzyme HADHA. Thapa D; Wu K; Stoner MW; Xie B; Zhang M; Manning JR; Lu Z; Li JH; Chen Y; Gucek M; Playford MP; Mehta NN; Harmon D; O'Doherty RM; Jurczak MJ; Sack MN; Scott I J Biol Chem; 2018 Nov; 293(46):17676-17684. PubMed ID: 30323061 [TBL] [Abstract][Full Text] [Related]
9. Regulation of fatty acid metabolism by mTOR in adult murine hearts occurs independently of changes in PGC-1α. Zhu Y; Soto J; Anderson B; Riehle C; Zhang YC; Wende AR; Jones D; McClain DA; Abel ED Am J Physiol Heart Circ Physiol; 2013 Jul; 305(1):H41-51. PubMed ID: 23624629 [TBL] [Abstract][Full Text] [Related]
10. GCN5L1 controls renal lipotoxicity through regulating acetylation of fatty acid oxidation enzymes. Lv T; Hu Y; Ma Y; Zhen J; Xin W; Wan Q J Physiol Biochem; 2019 Nov; 75(4):597-606. PubMed ID: 31760589 [TBL] [Abstract][Full Text] [Related]
11. Maturation of lipid metabolism in the fetal and newborn sheep heart. Drake RR; Louey S; Thornburg KL Am J Physiol Regul Integr Comp Physiol; 2023 Dec; 325(6):R809-R819. PubMed ID: 37867472 [TBL] [Abstract][Full Text] [Related]
12. Infarct-remodelled hearts with limited oxidative capacity boost fatty acid oxidation after conditioning against ischaemia/reperfusion injury. Lou PH; Zhang L; Lucchinetti E; Heck M; Affolter A; Gandhi M; Kienesberger PC; Hersberger M; Clanachan AS; Zaugg M Cardiovasc Res; 2013 Feb; 97(2):251-61. PubMed ID: 23097573 [TBL] [Abstract][Full Text] [Related]
13. Cardiomyocyte-specific deletion of GCN5L1 reduces lysine acetylation and attenuates diastolic dysfunction in aged mice by improving cardiac fatty acid oxidation. Stewart JE; Crawford JM; Mullen WE; Jacques A; Stoner MW; Scott I; Thapa D Biochem J; 2024 Mar; 481(6):423-436. PubMed ID: 38390938 [TBL] [Abstract][Full Text] [Related]
14. Regulating cardiac energy metabolism and bioenergetics by targeting the DNA damage repair protein BRCA1. Singh KK; Shukla PC; Yanagawa B; Quan A; Lovren F; Pan Y; Wagg CS; Teoh H; Lopaschuk GD; Verma S J Thorac Cardiovasc Surg; 2013 Sep; 146(3):702-9. PubMed ID: 23317938 [TBL] [Abstract][Full Text] [Related]
15. Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation. Abo Alrob O; Lopaschuk GD Biochem Soc Trans; 2014 Aug; 42(4):1043-51. PubMed ID: 25110000 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. Boylston JA; Sun J; Chen Y; Gucek M; Sack MN; Murphy E J Mol Cell Cardiol; 2015 Nov; 88():73-81. PubMed ID: 26388266 [TBL] [Abstract][Full Text] [Related]
17. Myocardial Energy Substrate Metabolism in Heart Failure : from Pathways to Therapeutic Targets. Fukushima A; Milner K; Gupta A; Lopaschuk GD Curr Pharm Des; 2015; 21(25):3654-64. PubMed ID: 26166604 [TBL] [Abstract][Full Text] [Related]
18. Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure. Tsuda M; Fukushima A; Matsumoto J; Takada S; Kakutani N; Nambu H; Yamanashi K; Furihata T; Yokota T; Okita K; Kinugawa S; Anzai T J Cachexia Sarcopenia Muscle; 2018 Oct; 9(5):844-859. PubMed ID: 30168279 [TBL] [Abstract][Full Text] [Related]
19. Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria. Tonin AM; Amaral AU; Busanello EN; Grings M; Castilho RF; Wajner M J Bioenerg Biomembr; 2013 Feb; 45(1-2):47-57. PubMed ID: 23065309 [TBL] [Abstract][Full Text] [Related]
20. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency. Ho KL; Zhang L; Wagg C; Al Batran R; Gopal K; Levasseur J; Leone T; Dyck JRB; Ussher JR; Muoio DM; Kelly DP; Lopaschuk GD Cardiovasc Res; 2019 Sep; 115(11):1606-1616. PubMed ID: 30778524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]