BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 27261451)

  • 1. Personalized medicine in cystic fibrosis: genistein supplementation as a treatment option for patients with a rare S1045Y-CFTR mutation.
    Arora K; Yarlagadda S; Zhang W; Moon C; Bouquet E; Srinivasan S; Li C; Stokes DC; Naren AP
    Am J Physiol Lung Cell Mol Physiol; 2016 Aug; 311(2):L364-74. PubMed ID: 27261451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of 3-phosphoinositide-dependent kinase 1 (PDK1) and serum- and glucocorticoid-induced protein kinase 1 (SGK1) by short-chain sphingolipid C4-ceramide rescues the trafficking defect of ΔF508-cystic fibrosis transmembrane conductance regulator (ΔF508-CFTR).
    Caohuy H; Yang Q; Eudy Y; Ha TA; Xu AE; Glover M; Frizzell RA; Jozwik C; Pollard HB
    J Biol Chem; 2014 Dec; 289(52):35953-68. PubMed ID: 25384981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of Functional Responses in Human Primary Lung Cells as a Basis for Personalized Therapy for Cystic Fibrosis.
    Awatade NT; Uliyakina I; Farinha CM; Clarke LA; Mendes K; Solé A; Pastor J; Ramos MM; Amaral MD
    EBioMedicine; 2015; 2(2):147-53. PubMed ID: 26137539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defective function of the cystic fibrosis-causing missense mutation G551D is recovered by genistein.
    Illek B; Zhang L; Lewis NC; Moss RB; Dong JY; Fischer H
    Am J Physiol; 1999 Oct; 277(4):C833-9. PubMed ID: 10516113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Personalized medicine in CF: from modulator development to therapy for cystic fibrosis patients with rare CFTR mutations.
    Harutyunyan M; Huang Y; Mun KS; Yang F; Arora K; Naren AP
    Am J Physiol Lung Cell Mol Physiol; 2018 Apr; 314(4):L529-L543. PubMed ID: 29351449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism-Based Personalized Medicine for Cystic Fibrosis by Suppressing Pseudo Exon Inclusion.
    Shibata S; Ajiro M; Hagiwara M
    Cell Chem Biol; 2020 Dec; 27(12):1472-1482.e6. PubMed ID: 32905759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cystic fibrosis mutation G551D alters the non-Michaelis-Menten behavior of the cystic fibrosis transmembrane conductance regulator (CFTR) channel and abolishes the inhibitory Genistein binding site.
    Derand R; Bulteau-Pignoux L; Becq F
    J Biol Chem; 2002 Sep; 277(39):35999-6004. PubMed ID: 12124395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological induction of CFTR function in patients with cystic fibrosis: mutation-specific therapy.
    Kerem E
    Pediatr Pulmonol; 2005 Sep; 40(3):183-96. PubMed ID: 15880796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutation specific therapy in CF.
    Kerem E
    Paediatr Respir Rev; 2006; 7 Suppl 1():S166-9. PubMed ID: 16798551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lumacaftor and ivacaftor in the management of patients with cystic fibrosis: current evidence and future prospects.
    Kuk K; Taylor-Cousar JL
    Ther Adv Respir Dis; 2015 Dec; 9(6):313-26. PubMed ID: 26416827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pharmacological Correction of Cystic Fibrosis: Molecular Mechanisms at the Plasma Membrane to Augment Mutant CFTR Function.
    Arora K; Naren AP
    Curr Drug Targets; 2016; 17(11):1275-81. PubMed ID: 26648081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cystic fibrosis mutation G1349D within the signature motif LSHGH of NBD2 abolishes the activation of CFTR chloride channels by genistein.
    Melin P; Thoreau V; Norez C; Bilan F; Kitzis A; Becq F
    Biochem Pharmacol; 2004 Jun; 67(12):2187-96. PubMed ID: 15163550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel personalized therapies for cystic fibrosis: treating the basic defect in all patients.
    Amaral MD
    J Intern Med; 2015 Feb; 277(2):155-166. PubMed ID: 25266997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel natural product compound enhances cAMP-regulated chloride conductance of cells expressing CFTR[delta]F508.
    deCarvalho AC; Ndi CP; Tsopmo A; Tane P; Ayafor J; Connolly JD; Teem JL
    Mol Med; 2002 Feb; 8(2):75-87. PubMed ID: 12080183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetics of Cystic Fibrosis: Clinical Implications.
    Egan ME
    Clin Chest Med; 2016 Mar; 37(1):9-16. PubMed ID: 26857764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural mechanisms for defective CFTR gating caused by the Q1412X mutation, a severe Class VI pathogenic mutation in cystic fibrosis.
    Yeh JT; Yu YC; Hwang TC
    J Physiol; 2019 Jan; 597(2):543-560. PubMed ID: 30408177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical implications of cystic fibrosis transmembrane conductance regulator mutations.
    Mickle JE; Cutting GR
    Clin Chest Med; 1998 Sep; 19(3):443-58, v. PubMed ID: 9759548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unravelling the Regions of Mutant F508del-CFTR More Susceptible to the Action of Four Cystic Fibrosis Correctors.
    Amico G; Brandas C; Moran O; Baroni D
    Int J Mol Sci; 2019 Nov; 20(21):. PubMed ID: 31683989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of deltaF508 CFTR in a cystic fibrosis respiratory epithelial cell line by 4-phenylbutyrate, genistein and CPX.
    Andersson C; Roomans GM
    Eur Respir J; 2000 May; 15(5):937-41. PubMed ID: 10853862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lumacaftor/ivacaftor combination for cystic fibrosis patients homozygous for Phe508del-CFTR.
    Zhang W; Zhang X; Zhang YH; Strokes DC; Naren AP
    Drugs Today (Barc); 2016 Apr; 52(4):229-37. PubMed ID: 27252987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.