These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 27261451)

  • 21. [Cystic fibrosis transmembrane conductance regulator (CFTR) gene: mutations and clinical phenotypes].
    Schwartz M
    Ugeskr Laeger; 2003 Feb; 165(9):912-6. PubMed ID: 12661515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cystic fibrosis transmembrane conductance regulator modulators for personalized drug treatment of cystic fibrosis: progress to date.
    Becq F
    Drugs; 2010 Feb; 70(3):241-59. PubMed ID: 20166764
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Localization studies of rare missense mutations in cystic fibrosis transmembrane conductance regulator (CFTR) facilitate interpretation of genotype-phenotype relationships.
    Krasnov KV; Tzetis M; Cheng J; Guggino WB; Cutting GR
    Hum Mutat; 2008 Nov; 29(11):1364-72. PubMed ID: 18951463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of CFTR by UCCF-029 and genistein.
    Al-Nakkash L; Springsteel MF; Kurth MJ; Nantz MH
    Bioorg Med Chem Lett; 2008 Jul; 18(14):3874-7. PubMed ID: 18595696
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CFTR Folding: From Structure and Proteostasis to Cystic Fibrosis Personalized Medicine.
    McDonald EF; Meiler J; Plate L
    ACS Chem Biol; 2023 Oct; 18(10):2128-2143. PubMed ID: 37730207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro prediction of stop-codon suppression by intravenous gentamicin in patients with cystic fibrosis: a pilot study.
    Sermet-Gaudelus I; Renouil M; Fajac A; Bidou L; Parbaille B; Pierrot S; Davy N; Bismuth E; Reinert P; Lenoir G; Lesure JF; Rousset JP; Edelman A
    BMC Med; 2007 Mar; 5():5. PubMed ID: 17394637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the CFTR gene in Iranian cystic fibrosis patients: identification of eight novel mutations.
    Alibakhshi R; Kianishirazi R; Cassiman JJ; Zamani M; Cuppens H
    J Cyst Fibros; 2008 Mar; 7(2):102-9. PubMed ID: 17662673
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cystic fibrosis transmembrane conductance regulator-modifying medications: the future of cystic fibrosis treatment.
    Pettit RS
    Ann Pharmacother; 2012; 46(7-8):1065-75. PubMed ID: 22739718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two CFTR mutations within codon 970 differently impact on the chloride channel functionality.
    Amato F; Scudieri P; Musante I; Tomati V; Caci E; Comegna M; Maietta S; Manzoni F; Di Lullo AM; De Wachter E; Vanderhelst E; Terlizzi V; Braggion C; Castaldo G; Galietta LJV
    Hum Mutat; 2019 Jun; 40(6):742-748. PubMed ID: 30851139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rescuing cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by transcomplementation.
    Cormet-Boyaka E; Jablonsky M; Naren AP; Jackson PL; Muccio DD; Kirk KL
    Proc Natl Acad Sci U S A; 2004 May; 101(21):8221-6. PubMed ID: 15141088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A mutation in the cystic fibrosis transmembrane conductance regulator gene associated with elevated sweat chloride concentrations in the absence of cystic fibrosis.
    Mickle JE; Macek M; Fulmer-Smentek SB; Egan MM; Schwiebert E; Guggino W; Moss R; Cutting GR
    Hum Mol Genet; 1998 Apr; 7(4):729-35. PubMed ID: 9499426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ivacaftor: the first therapy acting on the primary cause of cystic fibrosis.
    McPhail GL; Clancy JP
    Drugs Today (Barc); 2013 Apr; 49(4):253-60. PubMed ID: 23616952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and
    Hosseini Nami A; Kabiri M; Zafarghandi Motlagh F; Shirzadeh T; Bagherian H; Zeinali R; Karimi A; Zeinali S
    Ther Adv Respir Dis; 2024; 18():17534666241253990. PubMed ID: 38904297
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prolonged treatment of cells with genistein modulates the expression and function of the cystic fibrosis transmembrane conductance regulator.
    Schmidt A; Hughes LK; Cai Z; Mendes F; Li H; Sheppard DN; Amaral MD
    Br J Pharmacol; 2008 Mar; 153(6):1311-23. PubMed ID: 18223673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new era of personalized medicine for cystic fibrosis - at last!
    Quon BS; Wilcox PG
    Can Respir J; 2015; 22(5):257-60. PubMed ID: 26083544
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deletion of phenylalanine 508 causes attenuated phosphorylation-dependent activation of CFTR chloride channels.
    Wang F; Zeltwanger S; Hu S; Hwang TC
    J Physiol; 2000 May; 524 Pt 3(Pt 3):637-48. PubMed ID: 10790148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pharmacogenetics of cystic fibrosis treatment.
    Carter SC; McKone EF
    Pharmacogenomics; 2016 Aug; 17(13):1453-63. PubMed ID: 27490265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Translating the genetics of cystic fibrosis to personalized medicine.
    Corvol H; Thompson KE; Tabary O; le Rouzic P; Guillot L
    Transl Res; 2016 Feb; 168():40-49. PubMed ID: 25940043
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of cystic fibrosis and congenital bilateral absence of the vas deferens-associated mutations on cystic fibrosis transmembrane conductance regulator-mediated regulation of separate channels.
    Mickle JE; Milewski MI; Macek M; Cutting GR
    Am J Hum Genet; 2000 May; 66(5):1485-95. PubMed ID: 10762539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. c-Cbl facilitates endocytosis and lysosomal degradation of cystic fibrosis transmembrane conductance regulator in human airway epithelial cells.
    Ye S; Cihil K; Stolz DB; Pilewski JM; Stanton BA; Swiatecka-Urban A
    J Biol Chem; 2010 Aug; 285(35):27008-27018. PubMed ID: 20525683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.