These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 27261836)

  • 1. Proarrhythmic and Torsadogenic Effects of Potassium Channel Blockers in Patients.
    McCauley M; Vallabhajosyula S; Darbar D
    Card Electrophysiol Clin; 2016 Jun; 8(2):481-93. PubMed ID: 27261836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical possibilities for the development of novel antiarrhythmic drugs.
    Varró A; Biliczki P; Iost N; Virág L; Hála O; Kovács P; Mátyus P; Papp JG
    Curr Med Chem; 2004 Jan; 11(1):1-11. PubMed ID: 14754422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Current classification of anti-arrhythmia agents].
    Weirich J; Wenzel W
    Z Kardiol; 2000; 89 Suppl 3():62-7. PubMed ID: 10810787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium Channel Blockade Enhances Atrial Fibrillation-Selective Antiarrhythmic Effects of Optimized State-Dependent Sodium Channel Blockade.
    Aguilar M; Xiong F; Qi XY; Comtois P; Nattel S
    Circulation; 2015 Dec; 132(23):2203-11. PubMed ID: 26499964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current antiarrhythmic drugs: an overview of mechanisms of action and potential clinical utility.
    Singh BN
    J Cardiovasc Electrophysiol; 1999 Feb; 10(2):283-301. PubMed ID: 10090235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antiarrhythmic and proarrhythmic properties of QT-prolonging antianginal drugs.
    Singh BN; Wadhani N
    J Cardiovasc Pharmacol Ther; 2004 Sep; 9 Suppl 1():S85-97. PubMed ID: 15378133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired Inactivation of L-Type Ca2+ Current as a Potential Mechanism for Variable Arrhythmogenic Liability of HERG K+ Channel Blocking Drugs.
    Kim JG; Sung DJ; Kim HJ; Park SW; Won KJ; Kim B; Shin HC; Kim KS; Leem CH; Zhang YH; Cho H; Bae YM
    PLoS One; 2016; 11(3):e0149198. PubMed ID: 26930604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonselective I(Kr)-blockers do not induce torsades de pointes in the anesthetized rabbit during alpha1-adrenoceptor stimulation.
    Lu HR; Remeysen P; De Clerck F
    J Cardiovasc Pharmacol; 2000 Dec; 36(6):728-36. PubMed ID: 11117372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological modulations of cardiac ultra-rapid and slowly activating delayed rectifier currents: potential antiarrhythmic approaches.
    Islam MA
    Recent Pat Cardiovasc Drug Discov; 2010 Jan; 5(1):33-46. PubMed ID: 19929823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beat-by-beat QT interval variability, but not QT prolongation per se, predicts drug-induced torsades de pointes in the anaesthetised methoxamine-sensitized rabbit.
    Jacobson I; Carlsson L; Duker G
    J Pharmacol Toxicol Methods; 2011; 63(1):40-6. PubMed ID: 20451633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitation of hERG Activation by Its Blocker: A Mechanism to Reduce Drug-Induced Proarrhythmic Risk.
    Furutani K
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic mechanisms for prolongation of refractoriness and their proarrhythmic and antiarrhythmic correlates.
    Roden DM
    Am J Cardiol; 1996 Aug; 78(4A):12-6. PubMed ID: 8780324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiarrhythmic and cardiac electrophysiological effects of SZV-270, a novel compound with combined Class I/B and Class III effects, in rabbits and dogs.
    Varga RS; Hornyik T; Husti Z; Kohajda Z; Krajsovszky G; Nagy N; Jost N; Virág L; Tálosi L; Mátyus P; Varró A; Baczkó I
    Can J Physiol Pharmacol; 2021 Jan; 99(1):89-101. PubMed ID: 32970956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IKr channel blockers: novel antiarrhythmic agents.
    Lee K; Park JY; Ryu PD; Kwon LS; Kim HY
    Curr Med Chem Cardiovasc Hematol Agents; 2003 Oct; 1(3):203-23. PubMed ID: 15326913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined potassium and calcium channel blocking activities as a basis for antiarrhythmic efficacy with low proarrhythmic risk: experimental profile of BRL-32872.
    Bril A; Gout B; Bonhomme M; Landais L; Faivre JF; Linee P; Poyser RH; Ruffolo RR
    J Pharmacol Exp Ther; 1996 Feb; 276(2):637-46. PubMed ID: 8632331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular and ionic specificity of antiarrhythmic drug actions.
    Nattel S
    J Cardiovasc Electrophysiol; 1999 Feb; 10(2):272-82. PubMed ID: 10090234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ciprofloxacin induced acquired long QT syndrome in a patient under class III antiarrhythmic therapy.
    Keivanidou A; Arnaoutoglou C; Krommydas A; Papanikolaou G; Tsiptses K; Chrisopoulos C; Kirpizidis C
    Cardiol J; 2009; 16(2):172-4. PubMed ID: 19387967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of Proarrhythmic Effects of Potassium Channel Blockers.
    Skibsbye L; Ravens U
    Card Electrophysiol Clin; 2016 Jun; 8(2):395-410. PubMed ID: 27261830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beat-to-Beat variability of repolarization determines proarrhythmic outcome in dogs susceptible to drug-induced torsades de pointes.
    Thomsen MB; Volders PG; Beekman JD; Matz J; Vos MA
    J Am Coll Cardiol; 2006 Sep; 48(6):1268-76. PubMed ID: 16979017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging class III antiarrhythmic agents: mechanism of action and proarrhythmic potential.
    Nair LA; Grant AO
    Cardiovasc Drugs Ther; 1997 Apr; 11(2):149-67. PubMed ID: 9140692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.