These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
391 related articles for article (PubMed ID: 27262189)
1. Chlorophylls d and f and Their Role in Primary Photosynthetic Processes of Cyanobacteria. Allakhverdiev SI; Kreslavski VD; Zharmukhamedov SK; Voloshin RA; Korol'kova DV; Tomo T; Shen JR Biochemistry (Mosc); 2016 Mar; 81(3):201-12. PubMed ID: 27262189 [TBL] [Abstract][Full Text] [Related]
2. Energy transfer processes in chlorophyll f-containing cyanobacteria using time-resolved fluorescence spectroscopy on intact cells. Tomo T; Shinoda T; Chen M; Allakhverdiev SI; Akimoto S Biochim Biophys Acta; 2014 Sep; 1837(9):1484-9. PubMed ID: 24792349 [TBL] [Abstract][Full Text] [Related]
3. Chlorophyll f-driven photosynthesis in a cavernous cyanobacterium. Behrendt L; Brejnrod A; Schliep M; Sørensen SJ; Larkum AW; Kühl M ISME J; 2015 Sep; 9(9):2108-11. PubMed ID: 25668158 [TBL] [Abstract][Full Text] [Related]
4. Energy and electron transfer in photosystem II of a chlorophyll b-containing Synechocystis sp. PCC 6803 mutant. Vavilin D; Xu H; Lin S; Vermaas W Biochemistry; 2003 Feb; 42(6):1731-46. PubMed ID: 12578388 [TBL] [Abstract][Full Text] [Related]
5. Reversed-phase HPLC determination of chlorophyll a' and phylloquinone in Photosystem I of oxygenic photosynthetic organisms. Universal existence of one chlorophyll a' molecule in Photosystem I. Nakamura A; Akai M; Yoshida E; Taki T; Watanabe T Eur J Biochem; 2003 Jun; 270(11):2446-58. PubMed ID: 12755700 [TBL] [Abstract][Full Text] [Related]
6. Light-harvesting in Acaryochloris marina--spectroscopic characterization of a chlorophyll d-dominated photosynthetic antenna system. Schiller H; Senger H; Miyashita H; Miyachi S; Dau H FEBS Lett; 1997 Jun; 410(2-3):433-6. PubMed ID: 9237677 [TBL] [Abstract][Full Text] [Related]
7. Expanding the solar spectrum used by photosynthesis. Chen M; Blankenship RE Trends Plant Sci; 2011 Aug; 16(8):427-31. PubMed ID: 21493120 [TBL] [Abstract][Full Text] [Related]
8. Fourier transform infrared study of the cation radical of P680 in the photosystem II reaction center: evidence for charge delocalization on the chlorophyll dimer. Noguchi T; Tomo T; Inoue Y Biochemistry; 1998 Sep; 37(39):13614-25. PubMed ID: 9753448 [TBL] [Abstract][Full Text] [Related]
9. Both chlorophylls a and d are essential for the photochemistry in photosystem II of the cyanobacteria, Acaryochloris marina. Schlodder E; Cetin M; Eckert HJ; Schmitt FJ; Barber J; Telfer A Biochim Biophys Acta; 2007 Jun; 1767(6):589-95. PubMed ID: 17428440 [TBL] [Abstract][Full Text] [Related]
10. Substantial near-infrared radiation-driven photosynthesis of chlorophyll Kühl M; Trampe E; Mosshammer M; Johnson M; Larkum AW; Frigaard NU; Koren K Elife; 2020 Jan; 9():. PubMed ID: 31959282 [TBL] [Abstract][Full Text] [Related]
11. Uphill energy transfer in a chlorophyll d-dominating oxygenic photosynthetic prokaryote, Acaryochloris marina. Mimuro M; Hirayama K; Uezono K; Miyashita H; Miyachi S Biochim Biophys Acta; 2000 Jan; 1456(1):27-34. PubMed ID: 10611453 [TBL] [Abstract][Full Text] [Related]
12. Efficiency of photosynthesis in a Chl d-utilizing cyanobacterium is comparable to or higher than that in Chl a-utilizing oxygenic species. Mielke SP; Kiang NY; Blankenship RE; Gunner MR; Mauzerall D Biochim Biophys Acta; 2011 Sep; 1807(9):1231-6. PubMed ID: 21708123 [TBL] [Abstract][Full Text] [Related]
13. Photosystem trap energies and spectrally-dependent energy-storage efficiencies in the Chl d-utilizing cyanobacterium, Acaryochloris marina. Mielke SP; Kiang NY; Blankenship RE; Mauzerall D Biochim Biophys Acta; 2013 Mar; 1827(3):255-65. PubMed ID: 23159726 [TBL] [Abstract][Full Text] [Related]
14. Structure of a dimeric photosystem II complex from a cyanobacterium acclimated to far-red light. Gisriel CJ; Shen G; Flesher DA; Kurashov V; Golbeck JH; Brudvig GW; Amin M; Bryant DA J Biol Chem; 2023 Jan; 299(1):102815. PubMed ID: 36549647 [TBL] [Abstract][Full Text] [Related]
15. Bimodal intramolecular excitation energy transfer in a multichromophore photosynthetic model system: hybrid fusion proteins comprising natural phycobilin- and artificial chlorophyll-binding domains. Zeng XL; Tang K; Zhou N; Zhou M; Hou HJ; Scheer H; Zhao KH; Noy D J Am Chem Soc; 2013 Sep; 135(36):13479-87. PubMed ID: 23941594 [TBL] [Abstract][Full Text] [Related]
16. Low-temperature energy transfer in LHC-II trimers from the Chl a/b light-harvesting antenna of photosystem II. Savikhin S; van Amerongen H; Kwa SL; van Grondelle R; Struve WS Biophys J; 1994 May; 66(5):1597-603. PubMed ID: 8061208 [TBL] [Abstract][Full Text] [Related]
17. Harvesting far-red light: Functional integration of chlorophyll f into Photosystem I complexes of Synechococcus sp. PCC 7002. Tros M; Bersanini L; Shen G; Ho MY; van Stokkum IHM; Bryant DA; Croce R Biochim Biophys Acta Bioenerg; 2020 Aug; 1861(8):148206. PubMed ID: 32305412 [TBL] [Abstract][Full Text] [Related]
18. Excitation energy transfer from phycobiliprotein to chlorophyll d in intact cells of Acaryochloris marina studied by time- and wavelength-resolved fluorescence spectroscopy. Petrásek Z; Schmitt FJ; Theiss C; Huyer J; Chen M; Larkum A; Eichler HJ; Kemnitz K; Eckert HJ Photochem Photobiol Sci; 2005 Dec; 4(12):1016-22. PubMed ID: 16307116 [TBL] [Abstract][Full Text] [Related]
19. Separation and determination of minor photosynthetic pigments by reversed-phase HPLC with minimal alteration of chlorophylls. Nakamura A; Watanabe T Anal Sci; 2001 Apr; 17(4):503-8. PubMed ID: 11990566 [TBL] [Abstract][Full Text] [Related]
20. Photosynthesis supported by a chlorophyll f-dependent, entropy-driven uphill energy transfer in Halomicronema hongdechloris cells adapted to far-red light. Schmitt FJ; Campbell ZY; Bui MV; Hüls A; Tomo T; Chen M; Maksimov EG; Allakhverdiev SI; Friedrich T Photosynth Res; 2019 Mar; 139(1-3):185-201. PubMed ID: 30039357 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]