These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 27262434)
1. Beneficial native bacteria improve survival and mycorrhization of desert truffle mycorrhizal plants in nursery conditions. Navarro-Ródenas A; Berná LM; Lozano-Carrillo C; Andrino A; Morte A Mycorrhiza; 2016 Oct; 26(7):769-79. PubMed ID: 27262434 [TBL] [Abstract][Full Text] [Related]
2. The aquaporin TcAQP1 of the desert truffle Terfezia claveryi is a membrane pore for water and CO(2) transport. Navarro-Ródenas A; Ruíz-Lozano JM; Kaldenhoff R; Morte A Mol Plant Microbe Interact; 2012 Feb; 25(2):259-66. PubMed ID: 22088195 [TBL] [Abstract][Full Text] [Related]
3. Desert truffle mycorrhizosphere harbors organic acid releasing plant growth-promoting rhizobacteria, essentially during the truffle fruiting season. Arenas F; López-García Á; Berná LM; Morte A; Navarro-Ródenas A Mycorrhiza; 2022 Mar; 32(2):193-202. PubMed ID: 35043240 [TBL] [Abstract][Full Text] [Related]
4. Mycelium of Terfezia claveryi as inoculum source to produce desert truffle mycorrhizal plants. Arenas F; Navarro-Ródenas A; Chávez D; Gutiérrez A; Pérez-Gilabert M; Morte A Mycorrhiza; 2018 Oct; 28(7):691-701. PubMed ID: 30238152 [TBL] [Abstract][Full Text] [Related]
5. Expression analysis of aquaporins from desert truffle mycorrhizal symbiosis reveals a fine-tuned regulation under drought. Navarro-Ródenas A; Bárzana G; Nicolás E; Carra A; Schubert A; Morte A Mol Plant Microbe Interact; 2013 Sep; 26(9):1068-78. PubMed ID: 23656332 [TBL] [Abstract][Full Text] [Related]
6. Morphological characterization of the mycorrhiza formed by Helianthemum almeriense Pau with Terfezia claveryi Chatin and Picoa lefebvrei (Pat.) Maire. Gutiérrez A; Morte A; Honrubia M Mycorrhiza; 2003 Dec; 13(6):299-307. PubMed ID: 12721817 [TBL] [Abstract][Full Text] [Related]
7. Desert truffle genomes reveal their reproductive modes and new insights into plant-fungal interaction and ectendomycorrhizal lifestyle. Marqués-Gálvez JE; Miyauchi S; Paolocci F; Navarro-Ródenas A; Arenas F; Pérez-Gilabert M; Morin E; Auer L; Barry KW; Kuo A; Grigoriev IV; Martin FM; Kohler A; Morte A New Phytol; 2021 Mar; 229(5):2917-2932. PubMed ID: 33118170 [TBL] [Abstract][Full Text] [Related]
8. Purification and characterization of Terfezia claveryi TcCAT-1, a desert truffle catalase upregulated in mycorrhizal symbiosis. Marqués-Gálvez JE; Morte A; Navarro-Ródenas A; García-Carmona F; Pérez-Gilabert M PLoS One; 2019; 14(7):e0219300. PubMed ID: 31291312 [TBL] [Abstract][Full Text] [Related]
9. Morphological characterization of mycorrhizae formed between three Terfezia species (desert truffles) and several Cistaceae and Aleppo pine. Zitouni-Haouar Fel-H; Fortas Z; Chevalier G Mycorrhiza; 2014 Jul; 24(5):397-403. PubMed ID: 24384787 [TBL] [Abstract][Full Text] [Related]
10. The role of phosphorus in the ectendomycorrhiza continuum of desert truffle mycorrhizal plants. Navarro-Ródenas A; Pérez-Gilabert M; Torrente P; Morte A Mycorrhiza; 2012 Oct; 22(7):565-75. PubMed ID: 22391804 [TBL] [Abstract][Full Text] [Related]
11. Elevated atmospheric CO Marqués-Gálvez JE; Navarro-Ródenas A; Peguero-Pina JJ; Arenas F; Guarnizo AL; Gil-Pelegrín E; Morte A Physiol Plant; 2020 Dec; 170(4):537-549. PubMed ID: 32869857 [TBL] [Abstract][Full Text] [Related]
12. Spring stomatal response to vapor pressure deficit as a marker for desert truffle fruiting. Marqués-Gálvez JE; Morte A; Navarro-Ródenas A Mycorrhiza; 2020 Jul; 30(4):503-512. PubMed ID: 32556836 [TBL] [Abstract][Full Text] [Related]
13. In vitro interaction of the truffle Terfezia terfezioides with Robinia pseudoacacia and Helianthemum ovatum. Kovács GM; Vágvölgyi C; Oberwinkler F Folia Microbiol (Praha); 2003; 48(3):369-78. PubMed ID: 12879749 [TBL] [Abstract][Full Text] [Related]
14. The role of pre-symbiotic auxin signaling in ectendomycorrhiza formation between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum. Turgeman T; Lubinsky O; Roth-Bejerano N; Kagan-Zur V; Kapulnik Y; Koltai H; Zaady E; Ben-Shabat S; Guy O; Lewinsohn E; Sitrit Y Mycorrhiza; 2016 May; 26(4):287-97. PubMed ID: 26563200 [TBL] [Abstract][Full Text] [Related]
15. Mycorrhizal association between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum alters plant physiology and fitness to arid conditions. Turgeman T; Ben Asher J; Roth-Bejerano N; Kagan-Zur V; Kapulnik Y; Sitrit Y Mycorrhiza; 2011 Oct; 21(7):623-630. PubMed ID: 21416258 [TBL] [Abstract][Full Text] [Related]
16. The Microbiome Structure of the Symbiosis between the Desert Truffle Satish L; Barak H; Keren G; Yehezkel G; Kushmaro A; Ben-Dov E; Kagan-Zur V; Barak Z; Sitrit Y J Fungi (Basel); 2022 Oct; 8(10):. PubMed ID: 36294627 [TBL] [Abstract][Full Text] [Related]
17. Effect of water stress on in vitro mycelium cultures of two mycorrhizal desert truffles. Navarro-Ródenas A; Lozano-Carrillo MC; Pérez-Gilabert M; Morte A Mycorrhiza; 2011 May; 21(4):247-53. PubMed ID: 20645113 [TBL] [Abstract][Full Text] [Related]
18. A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Duponnois R; Plenchette C Mycorrhiza; 2003 Apr; 13(2):85-91. PubMed ID: 12682830 [TBL] [Abstract][Full Text] [Related]
19. Growth promotion and mycorrhizal colonization of Argan ( Khrizi A; Zitouni-Haouar FE; Fortas Z PeerJ; 2022; 10():e13769. PubMed ID: 35996663 [TBL] [Abstract][Full Text] [Related]
20. Different patterns in root and soil fungal diversity drive plant productivity of the desert truffle Terfezia claveryi in plantation. Arenas F; Navarro-Ródenas A; Marqués-Gálvez JE; Ghignone S; Mello A; Morte A Environ Microbiol; 2021 Oct; 23(10):5917-5933. PubMed ID: 34320277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]