BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 27262613)

  • 1. High-resolution genomic assays provide insight into the division of labor between TLS and HDR in mammalian replication of damaged DNA.
    Livneh Z; Cohen IS; Paz-Elizur T; Davidovsky D; Carmi D; Swain U; Mirlas-Neisberg N
    DNA Repair (Amst); 2016 Aug; 44():59-67. PubMed ID: 27262613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tolerance of lesions in E. coli: Chronological competition between Translesion Synthesis and Damage Avoidance.
    Fuchs RP
    DNA Repair (Amst); 2016 Aug; 44():51-58. PubMed ID: 27321147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome.
    Quinet A; Vessoni AT; Rocha CR; Gottifredi V; Biard D; Sarasin A; Menck CF; Stary A
    DNA Repair (Amst); 2014 Feb; 14():27-38. PubMed ID: 24380689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA damage tolerance by recombination: Molecular pathways and DNA structures.
    Branzei D; Szakal B
    DNA Repair (Amst); 2016 Aug; 44():68-75. PubMed ID: 27236213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporally distinct translesion synthesis pathways for ultraviolet light-induced photoproducts in the mammalian genome.
    Temviriyanukul P; van Hees-Stuivenberg S; Delbos F; Jacobs H; de Wind N; Jansen JG
    DNA Repair (Amst); 2012 Jun; 11(6):550-8. PubMed ID: 22521143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic assay reveals tolerance of DNA damage by both translesion DNA synthesis and homology-dependent repair in mammalian cells.
    Izhar L; Ziv O; Cohen IS; Geacintov NE; Livneh Z
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):E1462-9. PubMed ID: 23530190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postreplication repair mechanisms in the presence of DNA adducts in Escherichia coli.
    Bichara M; Meier M; Wagner J; Cordonnier A; Lambert IB
    Mutat Res; 2011; 727(3):104-22. PubMed ID: 21558018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translesion synthesis mechanisms depend on the nature of DNA damage in UV-irradiated human cells.
    Quinet A; Martins DJ; Vessoni AT; Biard D; Sarasin A; Stary A; Menck CF
    Nucleic Acids Res; 2016 Jul; 44(12):5717-31. PubMed ID: 27095204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA polymerase θ (POLQ), double-strand break repair, and cancer.
    Wood RD; Doublié S
    DNA Repair (Amst); 2016 Aug; 44():22-32. PubMed ID: 27264557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative measurement of translesion DNA synthesis in mammalian cells.
    Ziv O; Diamant N; Shachar S; Hendel A; Livneh Z
    Methods Mol Biol; 2012; 920():529-42. PubMed ID: 22941626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring RAD18-dependent replication of damaged DNA and discontinuities: A collection of advanced tools.
    Mórocz M; Qorri E; Pekker E; Tick G; Haracska L
    J Biotechnol; 2024 Jan; 380():1-19. PubMed ID: 38072328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health.
    Venkadakrishnan J; Lahane G; Dhar A; Xiao W; Bhat KM; Pandita TK; Bhat A
    Mol Cell Biol; 2023; 43(8):401-425. PubMed ID: 37439479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PDIP38/PolDIP2 controls the DNA damage tolerance pathways by increasing the relative usage of translesion DNA synthesis over template switching.
    Tsuda M; Ogawa S; Ooka M; Kobayashi K; Hirota K; Wakasugi M; Matsunaga T; Sakuma T; Yamamoto T; Chikuma S; Sasanuma H; Debatisse M; Doherty AJ; Fuchs RP; Takeda S
    PLoS One; 2019; 14(3):e0213383. PubMed ID: 30840704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of DNA polymerase ζ and the Y family DNA polymerases in promoting or preventing genome instability.
    Sharma S; Helchowski CM; Canman CE
    Mutat Res; 2013; 743-744():97-110. PubMed ID: 23195997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymerase Delta in Eukaryotes: How is It Transiently Exchanged with Specialized DNA Polymerases During Translesion DNA Synthesis?
    Liu F; Yang Y; Zhou Y
    Curr Protein Pept Sci; 2018; 19(8):790-804. PubMed ID: 29708067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-recombinogenic roles for Rad52 in translesion synthesis during DNA damage tolerance.
    Cano-Linares MI; Yáñez-Vilches A; García-Rodríguez N; Barrientos-Moreno M; González-Prieto R; San-Segundo P; Ulrich HD; Prado F
    EMBO Rep; 2021 Jan; 22(1):e50410. PubMed ID: 33289333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal regulation of PCNA ubiquitination in damage tolerance pathways.
    Masuda Y; Masutani C
    Crit Rev Biochem Mol Biol; 2019 Oct; 54(5):418-442. PubMed ID: 31736364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA Damage Tolerance Pathways in Human Cells: A Potential Therapeutic Target.
    Ler AAL; Carty MP
    Front Oncol; 2021; 11():822500. PubMed ID: 35198436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translesion synthesis in mammalian cells.
    Lehmann AR
    Exp Cell Res; 2006 Aug; 312(14):2673-6. PubMed ID: 16854411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of gaps opposite lesions by homologous recombination in mammalian cells.
    Adar S; Izhar L; Hendel A; Geacintov N; Livneh Z
    Nucleic Acids Res; 2009 Sep; 37(17):5737-48. PubMed ID: 19654238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.