These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 27262613)

  • 1. High-resolution genomic assays provide insight into the division of labor between TLS and HDR in mammalian replication of damaged DNA.
    Livneh Z; Cohen IS; Paz-Elizur T; Davidovsky D; Carmi D; Swain U; Mirlas-Neisberg N
    DNA Repair (Amst); 2016 Aug; 44():59-67. PubMed ID: 27262613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tolerance of lesions in E. coli: Chronological competition between Translesion Synthesis and Damage Avoidance.
    Fuchs RP
    DNA Repair (Amst); 2016 Aug; 44():51-58. PubMed ID: 27321147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome.
    Quinet A; Vessoni AT; Rocha CR; Gottifredi V; Biard D; Sarasin A; Menck CF; Stary A
    DNA Repair (Amst); 2014 Feb; 14():27-38. PubMed ID: 24380689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA damage tolerance by recombination: Molecular pathways and DNA structures.
    Branzei D; Szakal B
    DNA Repair (Amst); 2016 Aug; 44():68-75. PubMed ID: 27236213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporally distinct translesion synthesis pathways for ultraviolet light-induced photoproducts in the mammalian genome.
    Temviriyanukul P; van Hees-Stuivenberg S; Delbos F; Jacobs H; de Wind N; Jansen JG
    DNA Repair (Amst); 2012 Jun; 11(6):550-8. PubMed ID: 22521143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic assay reveals tolerance of DNA damage by both translesion DNA synthesis and homology-dependent repair in mammalian cells.
    Izhar L; Ziv O; Cohen IS; Geacintov NE; Livneh Z
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):E1462-9. PubMed ID: 23530190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postreplication repair mechanisms in the presence of DNA adducts in Escherichia coli.
    Bichara M; Meier M; Wagner J; Cordonnier A; Lambert IB
    Mutat Res; 2011; 727(3):104-22. PubMed ID: 21558018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Translesion synthesis mechanisms depend on the nature of DNA damage in UV-irradiated human cells.
    Quinet A; Martins DJ; Vessoni AT; Biard D; Sarasin A; Stary A; Menck CF
    Nucleic Acids Res; 2016 Jul; 44(12):5717-31. PubMed ID: 27095204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA polymerase θ (POLQ), double-strand break repair, and cancer.
    Wood RD; Doublié S
    DNA Repair (Amst); 2016 Aug; 44():22-32. PubMed ID: 27264557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative measurement of translesion DNA synthesis in mammalian cells.
    Ziv O; Diamant N; Shachar S; Hendel A; Livneh Z
    Methods Mol Biol; 2012; 920():529-42. PubMed ID: 22941626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring RAD18-dependent replication of damaged DNA and discontinuities: A collection of advanced tools.
    Mórocz M; Qorri E; Pekker E; Tick G; Haracska L
    J Biotechnol; 2024 Jan; 380():1-19. PubMed ID: 38072328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PDIP38/PolDIP2 controls the DNA damage tolerance pathways by increasing the relative usage of translesion DNA synthesis over template switching.
    Tsuda M; Ogawa S; Ooka M; Kobayashi K; Hirota K; Wakasugi M; Matsunaga T; Sakuma T; Yamamoto T; Chikuma S; Sasanuma H; Debatisse M; Doherty AJ; Fuchs RP; Takeda S
    PLoS One; 2019; 14(3):e0213383. PubMed ID: 30840704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implications of Translesion DNA Synthesis Polymerases on Genomic Stability and Human Health.
    Venkadakrishnan J; Lahane G; Dhar A; Xiao W; Bhat KM; Pandita TK; Bhat A
    Mol Cell Biol; 2023; 43(8):401-425. PubMed ID: 37439479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of DNA polymerase ζ and the Y family DNA polymerases in promoting or preventing genome instability.
    Sharma S; Helchowski CM; Canman CE
    Mutat Res; 2013; 743-744():97-110. PubMed ID: 23195997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymerase Delta in Eukaryotes: How is It Transiently Exchanged with Specialized DNA Polymerases During Translesion DNA Synthesis?
    Liu F; Yang Y; Zhou Y
    Curr Protein Pept Sci; 2018; 19(8):790-804. PubMed ID: 29708067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-recombinogenic roles for Rad52 in translesion synthesis during DNA damage tolerance.
    Cano-Linares MI; Yáñez-Vilches A; García-Rodríguez N; Barrientos-Moreno M; González-Prieto R; San-Segundo P; Ulrich HD; Prado F
    EMBO Rep; 2021 Jan; 22(1):e50410. PubMed ID: 33289333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal regulation of PCNA ubiquitination in damage tolerance pathways.
    Masuda Y; Masutani C
    Crit Rev Biochem Mol Biol; 2019 Oct; 54(5):418-442. PubMed ID: 31736364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA Damage Tolerance Pathways in Human Cells: A Potential Therapeutic Target.
    Ler AAL; Carty MP
    Front Oncol; 2021; 11():822500. PubMed ID: 35198436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translesion synthesis in mammalian cells.
    Lehmann AR
    Exp Cell Res; 2006 Aug; 312(14):2673-6. PubMed ID: 16854411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of gaps opposite lesions by homologous recombination in mammalian cells.
    Adar S; Izhar L; Hendel A; Geacintov N; Livneh Z
    Nucleic Acids Res; 2009 Sep; 37(17):5737-48. PubMed ID: 19654238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.