These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 27262716)
1. 3-Chloro-1,2-propanediol biodegradation by Ca-alginate immobilized Pseudomonas putida DSM 437 cells applying different processes: mass transfer effects. Konti A; Mamma D; Hatzinikolaou DG; Kekos D Bioprocess Biosyst Eng; 2016 Oct; 39(10):1597-609. PubMed ID: 27262716 [TBL] [Abstract][Full Text] [Related]
2. Kinetics studies of p-cresol biodegradation by using Pseudomonas putida in batch reactor and in continuous bioreactor packed with calcium alginate beads. Mathur AK; Bala S; Majumder CB; Sarkar S Water Sci Technol; 2010; 62(12):2920-9. PubMed ID: 21123923 [TBL] [Abstract][Full Text] [Related]
3. Solid matrix characterization of immobilized Pseudomonas putida MTCC 1194 used for phenol degradation. Bandhyopadhyay K; Das D; Maiti BR Appl Microbiol Biotechnol; 1999 Jun; 51(6):891-5. PubMed ID: 10422235 [TBL] [Abstract][Full Text] [Related]
4. Biodegradation of phenol in a continuous process: comparative study of stirred tank and fluidized-bed bioreactors. González G; Herrera MG; García MT; Peña MM Bioresour Technol; 2001 Feb; 76(3):245-51. PubMed ID: 11198177 [TBL] [Abstract][Full Text] [Related]
5. Removal of 1,3-dichloro2-propanol and 3-chloro1,2-propanediol by the whole cell system of pseudomonas putida DSM 437. Mamma D; Papadopoulou E; Petroutsos D; Christakopoulos P; Kekos D J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(3):303-13. PubMed ID: 16484065 [TBL] [Abstract][Full Text] [Related]
6. Determination of diffusion coefficients and diffusion characteristics for chlorferon and diethylthiophosphate in Ca-alginate gel beads. Ha J; Engler CR; Lee SJ Biotechnol Bioeng; 2008 Jul; 100(4):698-706. PubMed ID: 18080347 [TBL] [Abstract][Full Text] [Related]
7. Kluyveromyces lactis cells entrapped in Ca-alginate beads for the continuous production of a heterologous glucoamylase. de Alteriis E; Silvestro G; Poletto M; Romano V; Capitanio D; Compagno C; Parascandola P J Biotechnol; 2004 Apr; 109(1-2):83-92. PubMed ID: 15063616 [TBL] [Abstract][Full Text] [Related]
8. Effect of PEG-mediated pore forming on Ca-alginate immobilization of nitrilase-producing bacteria Pseudomonas putida XY4. Cheng Y; Ma L; Deng C; Xu Z; Chen J Bioprocess Biosyst Eng; 2014 Aug; 37(8):1653-8. PubMed ID: 24573215 [TBL] [Abstract][Full Text] [Related]
9. Biodegradation of hydrogen sulfide by a laboratory-scale immobilized Pseudomonas putida CH11 biofilter. Chung YC; Huang C; Tseng CP Biotechnol Prog; 1996; 12(6):773-8. PubMed ID: 8983205 [TBL] [Abstract][Full Text] [Related]
10. Immobilization of Sphingomonas sp. GY2B in polyvinyl alcohol-alginate-kaolin beads for efficient degradation of phenol against unfavorable environmental factors. Ruan B; Wu P; Chen M; Lai X; Chen L; Yu L; Gong B; Kang C; Dang Z; Shi Z; Liu Z Ecotoxicol Environ Saf; 2018 Oct; 162():103-111. PubMed ID: 29990721 [TBL] [Abstract][Full Text] [Related]
11. Biodegradation of tetrahydrofuran by Pseudomonas oleovorans DT4 immobilized in calcium alginate beads impregnated with activated carbon fiber: mass transfer effect and continuous treatment. Chen DZ; Fang JY; Shao Q; Ye JX; Ouyang DJ; Chen JM Bioresour Technol; 2013 Jul; 139():87-93. PubMed ID: 23644074 [TBL] [Abstract][Full Text] [Related]
12. Biodegradation of Methyl Orange by alginate-immobilized Aeromonas sp. in a packed bed reactor: external mass transfer modeling. Kathiravan MN; Praveen SA; Gim GH; Han GH; Kim SW Bioprocess Biosyst Eng; 2014 Nov; 37(11):2149-62. PubMed ID: 24810435 [TBL] [Abstract][Full Text] [Related]
13. Mass transfer studies on the reduction of Cr(VI) using calcium alginate immobilized Bacillus sp. in packed bed reactor. Kathiravan MN; Karthiga Rani R; Karthick R; Muthukumar K Bioresour Technol; 2010 Feb; 101(3):853-8. PubMed ID: 19800224 [TBL] [Abstract][Full Text] [Related]
14. [Influences of internal diffusion on the lipids bio-degradation with immobilized Bacillus sp. cells in fixed bed of basket type]. Caşcaval D; Galaction AI; Turnea M Rev Med Chir Soc Med Nat Iasi; 2012; 116(1):228-32. PubMed ID: 23077901 [TBL] [Abstract][Full Text] [Related]
15. Biodegradation of phenol by free and immobilized cells of Pseudomonas putida. González BG; Herrera TG Acta Microbiol Pol; 1995; 44(3-4):285-296. PubMed ID: 8934668 [TBL] [Abstract][Full Text] [Related]
16. Degradation of cationic surfactants using immobilized bacteria: Its effect on adsorption to activated sludge. Bergero MF; Lucchesi GI J Biotechnol; 2018 Apr; 272-273():1-6. PubMed ID: 29518462 [TBL] [Abstract][Full Text] [Related]
17. The Influence of Dopants on the Effectiveness of Alginate Beads in Immobilized Cell Reactors. Nordmeier A; Chidambaram D Appl Biochem Biotechnol; 2016 Apr; 178(8):1503-9. PubMed ID: 26707587 [TBL] [Abstract][Full Text] [Related]
18. Effect of concentration and substrate flow rate on isomaltulose production from sucrose by Erwinia sp. cells immobilized in calcium-alginate using packed bed reactor. Kawaguti HY; Harumi Sato H Appl Biochem Biotechnol; 2010 Sep; 162(1):89-102. PubMed ID: 20135241 [TBL] [Abstract][Full Text] [Related]
19. [Biodegradation of methyl tert-butyl ether by stabilized immobilized Methylibium petroleiphilum PM1 cells and its biodegradation kinetics analysis]. Cheng ZW; Fu LX; Jiang YF; Chen JM; Zhang R Huan Jing Ke Xue; 2011 May; 32(5):1511-7. PubMed ID: 21780613 [TBL] [Abstract][Full Text] [Related]
20. Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads. Ha J; Engler CR; Wild JR Bioresour Technol; 2009 Feb; 100(3):1138-42. PubMed ID: 18845433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]