BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 27263971)

  • 1. Sensory-Derived Glutamate Regulates Presynaptic Inhibitory Terminals in Mouse Spinal Cord.
    Mende M; Fletcher EV; Belluardo JL; Pierce JP; Bommareddy PK; Weinrich JA; Kabir ZD; Schierberl KC; Pagiazitis JG; Mendelsohn AI; Francesconi A; Edwards RH; Milner TA; Rajadhyaksha AM; van Roessel PJ; Mentis GZ; Kaltschmidt JA
    Neuron; 2016 Jun; 90(6):1189-1202. PubMed ID: 27263971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stringent specificity in the construction of a GABAergic presynaptic inhibitory circuit.
    Betley JN; Wright CV; Kawaguchi Y; Erdélyi F; Szabó G; Jessell TM; Kaltschmidt JA
    Cell; 2009 Oct; 139(1):161-74. PubMed ID: 19804761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of sensory input to the spinal cord by presynaptic ionotropic glutamate receptors.
    Rustioni A
    Arch Ital Biol; 2005 May; 143(2):103-12. PubMed ID: 16106991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus.
    Marty S; Wehrlé R; Sotelo C
    J Neurosci; 2000 Nov; 20(21):8087-95. PubMed ID: 11050130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corticospinal tract insult alters GABAergic circuitry in the mammalian spinal cord.
    Russ JB; Verina T; Comer JD; Comi AM; Kaltschmidt JA
    Front Neural Circuits; 2013; 7():150. PubMed ID: 24093008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal Ig/Caspr recognition promotes the formation of axoaxonic synapses in mouse spinal cord.
    Ashrafi S; Betley JN; Comer JD; Brenner-Morton S; Bar V; Shimoda Y; Watanabe K; Peles E; Jessell TM; Kaltschmidt JA
    Neuron; 2014 Jan; 81(1):120-9. PubMed ID: 24411736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamate spillover suppresses inhibition by activating presynaptic mGluRs.
    Mitchell SJ; Silver RA
    Nature; 2000 Mar; 404(6777):498-502. PubMed ID: 10761918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zinc-enriched GABAergic terminals in mouse spinal cord.
    Wang Z; Li JY; Dahlström A; Danscher G
    Brain Res; 2001 Dec; 921(1-2):165-72. PubMed ID: 11720723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycine and GABA(A) receptor subunits on Renshaw cells: relationship with presynaptic neurotransmitters and postsynaptic gephyrin clusters.
    Geiman EJ; Zheng W; Fritschy JM; Alvarez FJ
    J Comp Neurol; 2002 Mar; 444(3):275-89. PubMed ID: 11840480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurotransmitter systems of commissural interneurons in the lumbar spinal cord of neonatal rats.
    Wéber I; Veress G; Szucs P; Antal M; Birinyi A
    Brain Res; 2007 Oct; 1178():65-72. PubMed ID: 17920568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor.
    Thibault D; Giguère N; Loustalot F; Bourque MJ; Ducrot C; El Mestikawy S; Trudeau LÉ
    Brain Struct Funct; 2016 May; 221(4):2093-107. PubMed ID: 25782435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-expression of VGLUT1 and VGAT sustains glutamate and GABA co-release and is regulated by activity in cortical neurons.
    Fattorini G; Antonucci F; Menna E; Matteoli M; Conti F
    J Cell Sci; 2015 May; 128(9):1669-73. PubMed ID: 25749864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate spillover augments GABA synthesis and release from axodendritic synapses in rat hippocampus.
    Stafford MM; Brown MN; Mishra P; Stanwood GD; Mathews GC
    Hippocampus; 2010 Jan; 20(1):134-44. PubMed ID: 19338018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologous modulation of inhibitory synaptic transmission by metabotropic glutamate receptors in cultured hippocampal neurons.
    Fitzsimonds RM; Dichter MA
    J Neurophysiol; 1996 Feb; 75(2):885-93. PubMed ID: 8714661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre- and postsynaptic inhibitory control in the spinal cord dorsal horn.
    Bardoni R; Takazawa T; Tong CK; Choudhury P; Scherrer G; Macdermott AB
    Ann N Y Acad Sci; 2013 Mar; 1279():90-6. PubMed ID: 23531006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased nociceptive input rapidly modulates spinal GABAergic transmission through endogenously released glutamate.
    Zhou HY; Zhang HM; Chen SR; Pan HL
    J Neurophysiol; 2007 Jan; 97(1):871-82. PubMed ID: 17108089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of glutamatergic synaptic input to spinal lamina II(o) neurons by presynaptic alpha(2)-adrenergic receptors.
    Pan YZ; Li DP; Pan HL
    J Neurophysiol; 2002 Apr; 87(4):1938-47. PubMed ID: 11929913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of gamma-aminobutyric acid GAT-1 transporters on glutamatergic terminals of mouse spinal cord mediates glutamate release through anion channels and by transporter reversal.
    Raiteri L; Stigliani S; Patti L; Usai C; Bucci G; Diaspro A; Raiteri M; Bonanno G
    J Neurosci Res; 2005 May; 80(3):424-33. PubMed ID: 15789377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic inhibition of corticothalamic feedback by metabotropic glutamate receptors.
    Alexander GM; Godwin DW
    J Neurophysiol; 2005 Jul; 94(1):163-75. PubMed ID: 15772234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presynaptic inhibition of spinal sensory feedback ensures smooth movement.
    Fink AJ; Croce KR; Huang ZJ; Abbott LF; Jessell TM; Azim E
    Nature; 2014 May; 509(7498):43-8. PubMed ID: 24784215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.