These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 27264407)

  • 1. Joint power and kinematics coordination in load carriage running: Implications for performance and injury.
    Liew BX; Morris S; Netto K
    Gait Posture; 2016 Jun; 47():74-9. PubMed ID: 27264407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of load carriage on joint work at different running velocities.
    Liew BXW; Morris S; Netto K
    J Biomech; 2016 Oct; 49(14):3275-3280. PubMed ID: 27567569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower-limb joint work and power are modulated during load carriage based on load configuration and walking speed.
    Lenton GK; Doyle TLA; Lloyd DG; Higgs J; Billing D; Saxby DJ
    J Biomech; 2019 Jan; 83():174-180. PubMed ID: 30527387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Body borne loads impact walk-to-run and running biomechanics.
    Brown TN; O'Donovan M; Hasselquist L; Corner BD; Schiffman JM
    Gait Posture; 2014; 40(1):237-42. PubMed ID: 24794647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increase in Leg Stiffness Reduces Joint Work During Backpack Carriage Running at Slow Velocities.
    Liew B; Netto K; Morris S
    J Appl Biomech; 2017 Oct; 33(5):347-353. PubMed ID: 28530461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of lower extremity joint stiffness, work and power at different walking and running speeds.
    Jin L; Hahn ME
    Hum Mov Sci; 2018 Apr; 58():1-9. PubMed ID: 29331489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint kinematics and ground reaction forces in overground versus treadmill graded running.
    Firminger CR; Vernillo G; Savoldelli A; Stefanyshyn DJ; Millet GY; Edwards WB
    Gait Posture; 2018 Jun; 63():109-113. PubMed ID: 29729612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A cross-sectional study of the effects of load carriage on running characteristics and tibial mechanical stress: implications for stress-fracture injuries in women.
    Xu C; Silder A; Zhang J; Reifman J; Unnikrishnan G
    BMC Musculoskelet Disord; 2017 Mar; 18(1):125. PubMed ID: 28330449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A little bit faster: Lower extremity joint kinematics and kinetics as recreational runners achieve faster speeds.
    Orendurff MS; Kobayashi T; Tulchin-Francis K; Tullock AMH; Villarosa C; Chan C; Kraus E; Strike S
    J Biomech; 2018 Apr; 71():167-175. PubMed ID: 29472010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soldier-relevant loads impact lower limb biomechanics during anticipated and unanticipated single-leg cutting movements.
    Brown TN; O'Donovan M; Hasselquist L; Corner B; Schiffman JM
    J Biomech; 2014 Nov; 47(14):3494-501. PubMed ID: 25257813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of proximal trunk borne load on lower limb countermovement joint dynamics.
    Liew BXW; Helwig NE; Morris S; Netto K
    J Biomech; 2018 Oct; 79():223-226. PubMed ID: 30126721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of running speed on lower limb joint kinetics.
    Schache AG; Blanch PD; Dorn TW; Brown NA; Rosemond D; Pandy MG
    Med Sci Sports Exerc; 2011 Jul; 43(7):1260-71. PubMed ID: 21131859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of lower extremity kinematics to trunk accelerations during moderate treadmill running.
    Lindsay TR; Yaggie JA; McGregor SJ
    J Neuroeng Rehabil; 2014 Dec; 11():162. PubMed ID: 25495782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of low-pass filter combinations on lower extremity joint moments in distance running.
    Mai P; Willwacher S
    J Biomech; 2019 Oct; 95():109311. PubMed ID: 31451201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower limb joint kinetics and ankle joint stiffness in the sprint start push-off.
    Charalambous L; Irwin G; Bezodis IN; Kerwin D
    J Sports Sci; 2012; 30(1):1-9. PubMed ID: 22098532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of load carriage and footwear on lower extremity kinetics and kinematics during overground walking.
    Dames KD; Smith JD
    Gait Posture; 2016 Oct; 50():207-211. PubMed ID: 27649512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Influence of Motion Control, Neutral, and Cushioned Running Shoes on Lower Limb Kinematics.
    Langley B; Cramp M; Morrison SC
    J Appl Biomech; 2019 Jun; 35(3):216-222. PubMed ID: 30860416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of prolonged load carriage on ground reaction forces, lower limb kinematics and spatio-temporal parameters in female recreational hikers.
    Simpson KM; Munro BJ; Steele JR
    Ergonomics; 2012; 55(3):316-26. PubMed ID: 22409169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gender differences in hip and ankle joint kinematics on knee abduction during running.
    Sakaguchi M; Ogawa H; Shimizu N; Kanehisa H; Yanai T; Kawakami Y
    Eur J Sport Sci; 2014; 14 Suppl 1():S302-9. PubMed ID: 24444222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control.
    Daley MA; Felix G; Biewener AA
    J Exp Biol; 2007 Feb; 210(Pt 3):383-94. PubMed ID: 17234607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.