These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 27264647)
21. Vegetative insecticidal protein enhancing the toxicity of Bacillus thuringiensis subsp kurstaki against Spodoptera exigua. Zhu C; Ruan L; Peng D; Yu Z; Sun M Lett Appl Microbiol; 2006 Feb; 42(2):109-14. PubMed ID: 16441373 [TBL] [Abstract][Full Text] [Related]
22. Enhancing Cry1Ac toxicity by expression of the Helicoverpa armigera cadherin fragment in Bacillus thuringiensis. Peng D; Xu X; Ruan L; Yu Z; Sun M Res Microbiol; 2010 Jun; 161(5):383-9. PubMed ID: 20438837 [TBL] [Abstract][Full Text] [Related]
23. [Localization and identification of crystal protein genes in Bacillus thuringiensis strain 4.0718]. Zujiao F; Yunjun S; Liqiu X; Xuezhi D; Shengbiao H; Wenping L; Youming Z Wei Sheng Wu Xue Bao; 2008 Sep; 48(9):1250-5. PubMed ID: 19062652 [TBL] [Abstract][Full Text] [Related]
24. Spore stage expression of a vegetative insecticidal gene increase toxicity of Bacillus thuringiensis subsp. aizawai SP41 against Spodoptera exigua. Thamthiankul Chankhamhaengdecha S; Tantichodok A; Panbangred W J Biotechnol; 2008 Sep; 136(3-4):122-8. PubMed ID: 18602953 [TBL] [Abstract][Full Text] [Related]
25. Carboxy-terminal half of Cry1C can help vegetative insecticidal protein to form inclusion bodies in the mother cell of Bacillus thuringiensis. Song R; Peng D; Yu Z; Sun M Appl Microbiol Biotechnol; 2008 Sep; 80(4):647-54. PubMed ID: 18685842 [TBL] [Abstract][Full Text] [Related]
26. A novel Bacillus thuringiensis strain LLB6, isolated from bryophytes, and its new cry2Ac-type gene. Zhang LL; Lin J; Luo L; Guan CY; Zhang QL; Guan Y; Zhang Y; Ji JT; Huang ZP; Guan X Lett Appl Microbiol; 2007 Mar; 44(3):301-7. PubMed ID: 17309508 [TBL] [Abstract][Full Text] [Related]
27. Broadening the insecticidal spectrum of Lepidoptera-specific Bacillus thuringiensis strains by chromosomal integration of cry3A. Yue C; Sun M; Yu Z Biotechnol Bioeng; 2005 Aug; 91(3):296-303. PubMed ID: 15984034 [TBL] [Abstract][Full Text] [Related]
28. Highly toxic and broad-spectrum insecticidal Bacillus thuringiensis engineered by using the transposon Tn917 and protoplast fusion. Yu J; Pang Y; Tang M; Xie R; Tan L; Zeng S; Yuan M; Liu J Curr Microbiol; 2001 Aug; 43(2):112-9. PubMed ID: 11391474 [TBL] [Abstract][Full Text] [Related]
29. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests. Baranek J; Kaznowski A; Konecka E; Naimov S J Invertebr Pathol; 2015 Sep; 130():72-81. PubMed ID: 26146224 [TBL] [Abstract][Full Text] [Related]
30. Identification of a promoter for the vegetative insecticidal protein-encoding gene vip3LB from Bacillus thuringiensis. Mesrati LA; Tounsi S; Kamoun F; Jaoua S FEMS Microbiol Lett; 2005 Jun; 247(1):101-4. PubMed ID: 15927753 [TBL] [Abstract][Full Text] [Related]
31. The insecticidal CryIB crystal protein of Bacillus thuringiensis ssp. thuringiensis has dual specificity to coleopteran and lepidopteran larvae. Bradley D; Harkey MA; Kim MK; Biever KD; Bauer LS J Invertebr Pathol; 1995 Mar; 65(2):162-73. PubMed ID: 7722342 [TBL] [Abstract][Full Text] [Related]
32. Vip3A is responsible for the potency of Bacillus thuringiensis 9816C culture supernatant against Helicoverpa armigera and Spodoptera exigua. Cai J; Xiao L; Yan B; Bin G; Chen Y; Ren G J Gen Appl Microbiol; 2006 Apr; 52(2):83-9. PubMed ID: 16778351 [TBL] [Abstract][Full Text] [Related]
33. Identification and characterization of the Sudanese Bacillus thuringiensis and related bacterial strains for their efficacy against Helicoverpa armigera and Tribolium castaneum. Gorashi NE; Tripathi M; Kalia V; Gujar GT Indian J Exp Biol; 2014 Jun; 52(6):637-49. PubMed ID: 24956895 [TBL] [Abstract][Full Text] [Related]
34. Detection of β-exotoxin synthesis in Bacillus thuringiensis using an easy bioassay with the nematode Caenorhabditis elegans. Sánchez-Soto AI; Saavedra-González GI; Ibarra JE; Salcedo-Hernández R; Barboza-Corona JE; Del Rincón-Castro MC Lett Appl Microbiol; 2015 Dec; 61(6):562-7. PubMed ID: 26381648 [TBL] [Abstract][Full Text] [Related]
35. Diversity of Bacillus thuringiensis strains isolated from citrus orchards in spain and evaluation of their insecticidal activity against Ceratitis capitata. Vidal-Quist JC; Castañera P; González-Cabrera J J Microbiol Biotechnol; 2009 Aug; 19(8):749-59. PubMed ID: 19734711 [TBL] [Abstract][Full Text] [Related]
36. Molecular characterisation of Bacillus thuringiensis strain MEB4 highly toxic to the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Abdelmalek N; Sellami S; Ben Kridis A; Tounsi S; Rouis S Pest Manag Sci; 2016 May; 72(5):913-21. PubMed ID: 26103535 [TBL] [Abstract][Full Text] [Related]
37. Crystal structure of a Vip3B family insecticidal protein reveals a new fold and a unique tetrameric assembly. Zheng M; Evdokimov AG; Moshiri F; Lowder C; Haas J Protein Sci; 2020 Apr; 29(4):824-829. PubMed ID: 31840313 [TBL] [Abstract][Full Text] [Related]
38. Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. Abdelkefi-Mesrati L; Boukedi H; Dammak-Karray M; Sellami-Boudawara T; Jaoua S; Tounsi S J Invertebr Pathol; 2011 Feb; 106(2):250-4. PubMed ID: 20965198 [TBL] [Abstract][Full Text] [Related]
39. Critical amino acids for the insecticidal activity of Vip3Af from Bacillus thuringiensis: Inference on structural aspects. Banyuls N; Hernández-Rodríguez CS; Van Rie J; Ferré J Sci Rep; 2018 May; 8(1):7539. PubMed ID: 29765057 [TBL] [Abstract][Full Text] [Related]
40. Enhancement of Bacillus thuringiensis insecticidal activity by combining Cry1Ac and bi-functional toxin HWTX-XI from spider. Sun Y; Fu Z; He X; Yuan C; Ding X; Xia L J Invertebr Pathol; 2016 Mar; 135():60-2. PubMed ID: 25721170 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]