These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 27264647)
41. Isolation and characterization of strain of Bacillus thuringiensis subsp. kenyae containing two novel cry1-type toxin genes. Choi JY; Li MS; Shim HJ; Roh JY; Woo SD; Jin BR; Boo KS; Je YH J Microbiol Biotechnol; 2007 Sep; 17(9):1498-503. PubMed ID: 18062228 [TBL] [Abstract][Full Text] [Related]
42. [Construction of insecticidal recombinant Bacillus thuringiensis using an integrative vector]. Yue CY; Sun M; Chen SW; Yu ZN Yi Chuan Xue Bao; 2003 Aug; 30(8):737-42. PubMed ID: 14682242 [TBL] [Abstract][Full Text] [Related]
43. Characterization of vegetative insecticidal protein vip genes of Bacillus thuringiensis from Sichuan Basin in China. Yu X; Zheng A; Zhu J; Wang S; Wang L; Deng Q; Li S; Liu H; Li P Curr Microbiol; 2011 Mar; 62(3):752-7. PubMed ID: 20963416 [TBL] [Abstract][Full Text] [Related]
44. Characterization of Cry34/Cry35 binary insecticidal proteins from diverse Bacillus thuringiensis strain collections. Schnepf HE; Lee S; Dojillo J; Burmeister P; Fencil K; Morera L; Nygaard L; Narva KE; Wolt JD Appl Environ Microbiol; 2005 Apr; 71(4):1765-74. PubMed ID: 15811999 [TBL] [Abstract][Full Text] [Related]
45. Diversity of Colombian strains of Bacillus thuringiensis with insecticidal activity against dipteran and lepidopteran insects. Armengol G; Escobar MC; Maldonado ME; Orduz S J Appl Microbiol; 2007 Jan; 102(1):77-88. PubMed ID: 17184322 [TBL] [Abstract][Full Text] [Related]
46. New Bacillus thuringiensis toxin combinations for biological control of lepidopteran larvae. Elleuch J; Zghal RZ; Jemaà M; Azzouz H; Tounsi S; Jaoua S Int J Biol Macromol; 2014 Apr; 65():148-54. PubMed ID: 24444881 [TBL] [Abstract][Full Text] [Related]
47. [The characteristics of Bacillus thuringiensis strain YBT833 and its transformants that containing different ICP genes]. Lu SQ; Liu ZD; Yu ZN Yi Chuan Xue Bao; 2000; 27(9):839-44. PubMed ID: 11132501 [TBL] [Abstract][Full Text] [Related]
48. Structural Domains of the Quan Y; Ferré J Toxins (Basel); 2019 Jun; 11(6):. PubMed ID: 31234444 [TBL] [Abstract][Full Text] [Related]
49. The plasmid pBMBt1 from Bacillus thuringiensis subsp. darmstadiensis (INTA Mo14-4) replicates by the rolling-circle mechanism and encodes a novel insecticidal crystal protein-like gene. Loeza-Lara PD; Benintende G; Cozzi J; Ochoa-Zarzosa A; Baizabal-Aguirre VM; Valdez-Alarcón JJ; López-Meza JE Plasmid; 2005 Nov; 54(3):229-40. PubMed ID: 15970328 [TBL] [Abstract][Full Text] [Related]
50. Coexpression of the silent cry2Ab27 together with cry1 genes in Bacillus thuringiensis subsp. aizawai SP41 leads to formation of amorphous crystal toxin and enhanced toxicity against Helicoverpa armigera. Somwatcharajit R; Tiantad I; Panbangred W J Invertebr Pathol; 2014 Feb; 116():48-55. PubMed ID: 24412546 [TBL] [Abstract][Full Text] [Related]
51. Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua. Donovan WP; Donovan JC; Engleman JT J Invertebr Pathol; 2001 Jul; 78(1):45-51. PubMed ID: 11500093 [TBL] [Abstract][Full Text] [Related]
52. Susceptibility of Spodoptera exigua to 9 toxins from Bacillus thuringiensis. Hernández-Martínez P; Ferré J; Escriche B J Invertebr Pathol; 2008 Mar; 97(3):245-50. PubMed ID: 18082763 [TBL] [Abstract][Full Text] [Related]
53. Characterization of the Bacillus thuringiensis strains isolated from Taiwan. Chak KF; Young YM Proc Natl Sci Counc Repub China B; 1990 Jul; 14(3):175-82. PubMed ID: 2274596 [TBL] [Abstract][Full Text] [Related]
54. Current advances on Vip3 highlight the promising potential of bacterial insecticidal proteins. Jiang K; Gao X Trends Microbiol; 2024 Aug; 32(8):732-735. PubMed ID: 38902178 [TBL] [Abstract][Full Text] [Related]
55. Characterization, cloning, expression and bioassay of El-Gaied L; Mahmoud A; Salem R; Elmenofy W; Saleh I; Abulreesh HH; Arif IA; Osman G Saudi J Biol Sci; 2020 May; 27(5):1363-1367. PubMed ID: 32346346 [TBL] [Abstract][Full Text] [Related]
56. UV protection and insecticidal activity of microencapsulated Vip3Ag4 protein in Bacillus megaterium. Palma L; Ruiz de Escudero I; Mañeru-Oria F; Berry C; Caballero P Toxicon; 2024 Aug; 247():107807. PubMed ID: 38897358 [TBL] [Abstract][Full Text] [Related]
57. Update on the detection of beta-exotoxin in Bacillus thuringiensis strains by HPLC analysis. Hernández CS; Ferré J; Larget-Thiéry I J Appl Microbiol; 2001 Apr; 90(4):643-7. PubMed ID: 11309078 [TBL] [Abstract][Full Text] [Related]
58. The Vip3Ag4 Insecticidal Protoxin from Bacillus thuringiensis Adopts A Tetrameric Configuration That Is Maintained on Proteolysis. Palma L; Scott DJ; Harris G; Din SU; Williams TL; Roberts OJ; Young MT; Caballero P; Berry C Toxins (Basel); 2017 May; 9(5):. PubMed ID: 28505109 [TBL] [Abstract][Full Text] [Related]
59. Unraveling the abundance of vip3-type genes in Indian Bacillus thuringiensis across the agroclimatic landscape and impact of amino acid substitutions for safer agriculture. Gupta M; Kumar H; Debbarma A; Kaur S Gene; 2025 Jan; 933():148953. PubMed ID: 39299531 [TBL] [Abstract][Full Text] [Related]
60. Localization and in silico study of the vegetative insecticidal proteins Vip2S-Vip1S of Bacillus thuringiensis. Sellami S; Jemli S; Abdelmalek N; Dabbéche E; Jamoussi K Int J Biol Macromol; 2016 Oct; 91():510-7. PubMed ID: 27264647 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]