These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27264746)

  • 1. Supersonic Dislocation Bursts in Silicon.
    Hahn EN; Zhao S; Bringa EM; Meyers MA
    Sci Rep; 2016 Jun; 6():26977. PubMed ID: 27264746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supersonic Screw Dislocations Gliding at the Shear Wave Speed.
    Peng S; Wei Y; Jin Z; Yang W
    Phys Rev Lett; 2019 Feb; 122(4):045501. PubMed ID: 30768288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attenuation of the dynamic yield point of shocked aluminum using elastodynamic simulations of dislocation dynamics.
    Gurrutxaga-Lerma B; Balint DS; Dini D; Eakins DE; Sutton AP
    Phys Rev Lett; 2015 May; 114(17):174301. PubMed ID: 25978237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dislocations faster than the speed of sound.
    Gumbsch P; Gao H
    Science; 1999 Feb; 283(5404):965-8. PubMed ID: 9974385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dislocation nucleation in shocked fcc solids: effects of temperature and preexisting voids.
    Hatano T
    Phys Rev Lett; 2004 Aug; 93(8):085501. PubMed ID: 15447198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dislocation-driven surface dynamics on solids.
    Kodambaka S; Khare SV; Swiech W; Ohmori K; Petrov I; Greene JE
    Nature; 2004 May; 429(6987):49-52. PubMed ID: 15129275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supersonic Dislocation Kinetics from an Augmented Peierls Model.
    Rosakis P
    Phys Rev Lett; 2001 Jan; 86(1):95-98. PubMed ID: 11136102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization.
    Zhao S; Kad B; Wehrenberg CE; Remington BA; Hahn EN; More KL; Meyers MA
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):9791-9796. PubMed ID: 28847926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations.
    Lehtinen A; Granberg F; Laurson L; Nordlund K; Alava MJ
    Phys Rev E; 2016 Jan; 93(1):013309. PubMed ID: 26871192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homogeneous nucleation of carbon dioxide in supersonic nozzles I: experiments and classical theories.
    Dingilian KK; Halonen R; Tikkanen V; Reischl B; Vehkamäki H; Wyslouzil BE
    Phys Chem Chem Phys; 2020 Sep; 22(34):19282-19298. PubMed ID: 32815933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glissile dislocations with transient cores in silicon.
    Pizzagalli L; Godet J; Brochard S
    Phys Rev Lett; 2009 Aug; 103(6):065505. PubMed ID: 19792584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-situ observation of the initiation of plasticity by nucleation of prismatic dislocation loops.
    Lee S; Vaid A; Im J; Kim B; Prakash A; Guénolé J; Kiener D; Bitzek E; Oh SH
    Nat Commun; 2020 May; 11(1):2367. PubMed ID: 32398690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transonic dislocation propagation in diamond.
    Katagiri K; Pikuz T; Fang L; Albertazzi B; Egashira S; Inubushi Y; Kamimura G; Kodama R; Koenig M; Kozioziemski B; Masaoka G; Miyanishi K; Nakamura H; Ota M; Rigon G; Sakawa Y; Sano T; Schoofs F; Smith ZJ; Sueda K; Togashi T; Vinci T; Wang Y; Yabashi M; Yabuuchi T; Dresselhaus-Marais LE; Ozaki N
    Science; 2023 Oct; 382(6666):69-72. PubMed ID: 37796999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instabilities of High Speed Dislocations.
    Verschueren J; Gurrutxaga-Lerma B; Balint DS; Sutton AP; Dini D
    Phys Rev Lett; 2018 Oct; 121(14):145502. PubMed ID: 30339414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dislocation multi-junctions and strain hardening.
    Bulatov VV; Hsiung LL; Tang M; Arsenlis A; Bartelt MC; Cai W; Florando JN; Hiratani M; Rhee M; Hommes G; Pierce TG; de la Rubia TD
    Nature; 2006 Apr; 440(7088):1174-8. PubMed ID: 16641992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics.
    Wehrenberg CE; McGonegle D; Bolme C; Higginbotham A; Lazicki A; Lee HJ; Nagler B; Park HS; Remington BA; Rudd RE; Sliwa M; Suggit M; Swift D; Tavella F; Zepeda-Ruiz L; Wark JS
    Nature; 2017 Oct; 550(7677):496-499. PubMed ID: 29072261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shockwave generates < 100 > dislocation loops in bcc iron.
    Peng Q; Meng F; Yang Y; Lu C; Deng H; Wang L; De S; Gao F
    Nat Commun; 2018 Nov; 9(1):4880. PubMed ID: 30446642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-ideal strength in gold nanowires achieved through microstructural design.
    Deng C; Sansoz F
    ACS Nano; 2009 Oct; 3(10):3001-8. PubMed ID: 19743833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermittent dislocation flow in viscoplastic deformation.
    Miguel MC; Vespignani A; Zapperi S; Weiss J; Grasso JR
    Nature; 2001 Apr; 410(6829):667-71. PubMed ID: 11287948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harnessing dislocation motion using an electric field.
    Li M; Shen Y; Luo K; An Q; Gao P; Xiao P; Zou Y
    Nat Mater; 2023 Aug; 22(8):958-963. PubMed ID: 37337072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.