These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 27264831)

  • 1. Improving training for sensory augmentation using the science of expertise.
    Bertram C; Stafford T
    Neurosci Biobehav Rev; 2016 Sep; 68():234-244. PubMed ID: 27264831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effectiveness of internet-based e-learning on clinician behavior and patient outcomes: a systematic review protocol.
    Sinclair P; Kable A; Levett-Jones T
    JBI Database System Rev Implement Rep; 2015 Jan; 13(1):52-64. PubMed ID: 26447007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haptic-assistive technologies for audition and vision sensory disabilities.
    Sorgini F; Caliò R; Carrozza MC; Oddo CM
    Disabil Rehabil Assist Technol; 2018 May; 13(4):394-421. PubMed ID: 29017361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of sensory augmentation for people with vestibular deficits: Real-time balance aid and/or rehabilitation device?
    Sienko KH; Whitney SL; Carender WJ; Wall C
    J Vestib Res; 2017; 27(1):63-76. PubMed ID: 28387692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond sensory substitution--learning the sixth sense.
    Nagel SK; Carl C; Kringe T; Märtin R; König P
    J Neural Eng; 2005 Dec; 2(4):R13-26. PubMed ID: 16317228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning New Sensorimotor Contingencies: Effects of Long-Term Use of Sensory Augmentation on the Brain and Conscious Perception.
    König SU; Schumann F; Keyser J; Goeke C; Krause C; Wache S; Lytochkin A; Ebert M; Brunsch V; Wahn B; Kaspar K; Nagel SK; Meilinger T; Bülthoff H; Wolbers T; Büchel C; König P
    PLoS One; 2016; 11(12):e0166647. PubMed ID: 27959914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobile assistive technologies for the visually impaired.
    Hakobyan L; Lumsden J; O'Sullivan D; Bartlett H
    Surv Ophthalmol; 2013; 58(6):513-28. PubMed ID: 24054999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cognitive remediation and cognitive assistive technologies in schizophrenia].
    Sablier J; Stip E; Franck N
    Encephale; 2009 Apr; 35(2):160-7. PubMed ID: 19393385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perception with compensatory devices: from sensory substitution to sensorimotor extension.
    Auvray M; Myin E
    Cogn Sci; 2009 Aug; 33(6):1036-58. PubMed ID: 21585495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing sensory-substitution devices: Principles, pitfalls and potential1.
    Kristjánsson Á; Moldoveanu A; Jóhannesson ÓI; Balan O; Spagnol S; Valgeirsdóttir VV; Unnthorsson R
    Restor Neurol Neurosci; 2016 Sep; 34(5):769-87. PubMed ID: 27567755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic synaesthesia and sensory substitution.
    Proulx MJ
    Conscious Cogn; 2010 Mar; 19(1):501-3. PubMed ID: 20056449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Haptic-based perception-empathy biofeedback system for balance rehabilitation in patients with chronic stroke: Concepts and initial feasibility study.
    Yasuda K; Saichi K; Kaibuki N; Harashima H; Iwata H
    Gait Posture; 2018 May; 62():484-489. PubMed ID: 29677663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multisensory perceptual learning and sensory substitution.
    Proulx MJ; Brown DJ; Pasqualotto A; Meijer P
    Neurosci Biobehav Rev; 2014 Apr; 41():16-25. PubMed ID: 23220697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New tools for learning.
    Dickinson D
    Turk J Pediatr; 1999; 41 Suppl():127-35. PubMed ID: 10770084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmenting perception: How artificial intelligence transforms sensory substitution.
    Longin L; Deroy O
    Conscious Cogn; 2022 Mar; 99():103280. PubMed ID: 35114632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical experience enhances science learning.
    Kontra C; Lyons DJ; Fischer SM; Beilock SL
    Psychol Sci; 2015 Jun; 26(6):737-49. PubMed ID: 25911125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of visual deprivation and experience on the performance of sensory substitution devices.
    Stronks HC; Nau AC; Ibbotson MR; Barnes N
    Brain Res; 2015 Oct; 1624():140-152. PubMed ID: 26183014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning without training.
    Beste C; Dinse HR
    Curr Biol; 2013 Jun; 23(11):R489-99. PubMed ID: 23743417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Psychological principles of successful aging technologies: a mini-review.
    Lindenberger U; Lövdén M; Schellenbach M; Li SC; Krüger A
    Gerontology; 2008; 54(1):59-68. PubMed ID: 18259095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perception as a Route for Motor Skill Learning: Perspectives from Neuroscience.
    Ossmy O; Mukamel R
    Neuroscience; 2018 Jul; 382():144-153. PubMed ID: 29694916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.