These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 27264892)

  • 41. Cold tolerance and cold-induced modulation of gene expression in two Drosophila virilis group species with different distributions.
    Vesala L; Salminen TS; Laiho A; Hoikkala A; Kankare M
    Insect Mol Biol; 2012 Feb; 21(1):107-18. PubMed ID: 22122733
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fatty acids of membrane phospholipids in Drosophila melanogaster lines showing rapid and slow recovery from chill coma.
    Goto SG; Udaka H; Ueda C; Katagiri C
    Biochem Biophys Res Commun; 2010 Jan; 391(2):1251-4. PubMed ID: 20006581
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii.
    Jakobs R; Gariepy TD; Sinclair BJ
    J Insect Physiol; 2015 Aug; 79():1-9. PubMed ID: 25982520
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microbiota disruption leads to reduced cold tolerance in Drosophila flies.
    Henry Y; Colinet H
    Naturwissenschaften; 2018 Sep; 105(9-10):59. PubMed ID: 30291448
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Laboratory diet influences cold tolerance in a genotype-dependent manner in Drosophila melanogaster.
    Littler AS; Garcia MJ; Teets NM
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Jul; 257():110948. PubMed ID: 33819503
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proteomic characterization of inbreeding-related cold sensitivity in Drosophila melanogaster.
    Vermeulen CJ; Pedersen KS; Beck HC; Petersen J; Gagalova KK; Loeschcke V
    PLoS One; 2013; 8(5):e62680. PubMed ID: 23658762
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of Starvation and Thermal Stress on the Thermal Tolerance of Silkworm, Bombyx mori: Existence of Trade-offs and Cross-Tolerances.
    Mir AH; Qamar A
    Neotrop Entomol; 2018 Oct; 47(5):610-618. PubMed ID: 28956278
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A lack of repeatability creates the illusion of a trade-off between basal and plastic cold tolerance.
    O'Neill E; Davis HE; MacMillan HA
    Proc Biol Sci; 2021 Dec; 288(1964):20212121. PubMed ID: 34875191
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of photoperiodically induced reproductive diapause and cold hardening on the cold tolerance of Drosophila montana.
    Vesala L; Hoikkala A
    J Insect Physiol; 2011 Jan; 57(1):46-51. PubMed ID: 20932841
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The negative effect of starvation and the positive effect of mild thermal stress on thermal tolerance of the red flour beetle, Tribolium castaneum.
    Scharf I; Wexler Y; MacMillan HA; Presman S; Simson E; Rosenstein S
    Naturwissenschaften; 2016 Apr; 103(3-4):20. PubMed ID: 26888763
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heat knockdown resistance and chill-coma recovery as correlated responses to selection on mating success at high temperature in
    Stazione L; Norry FM; Gomez FH; Sambucetti P
    Ecol Evol; 2020 Feb; 10(4):1998-2006. PubMed ID: 32128132
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Developmental thermal plasticity among Drosophila melanogaster populations.
    Fallis LC; Fanara JJ; Morgan TJ
    J Evol Biol; 2014 Mar; 27(3):557-64. PubMed ID: 26230171
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A transcriptomics assessment of oxygen-temperature interactions reveals novel candidate genes underlying variation in thermal tolerance and survival.
    Boardman L; Mitchell KA; Terblanche JS; Sørensen JG
    J Insect Physiol; 2018 Apr; 106(Pt 3):179-188. PubMed ID: 29038013
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Muscle membrane potential and insect chill coma.
    Andersen JL; MacMillan HA; Overgaard J
    J Exp Biol; 2015 Aug; 218(Pt 16):2492-5. PubMed ID: 26089529
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Longevity for free? Increased reproduction with limited trade-offs in Drosophila melanogaster selected for increased life span.
    Wit J; Sarup P; Lupsa N; Malte H; Frydenberg J; Loeschcke V
    Exp Gerontol; 2013 Mar; 48(3):349-57. PubMed ID: 23353929
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plasticity and cross-tolerance to heterogeneous environments: divergent stress responses co-evolved in an African fruit fly.
    Gotcha N; Terblanche JS; Nyamukondiwa C
    J Evol Biol; 2018 Jan; 31(1):98-110. PubMed ID: 29080375
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sodium distribution predicts the chill tolerance of Drosophila melanogaster raised in different thermal conditions.
    MacMillan HA; Andersen JL; Loeschcke V; Overgaard J
    Am J Physiol Regul Integr Comp Physiol; 2015 May; 308(10):R823-31. PubMed ID: 25761700
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Direct and correlated effects of selection on flight after exposure to thermal stress in Drosophila melanogaster.
    Krebs RA; Thompson KA
    Genetica; 2006; 128(1-3):217-25. PubMed ID: 17028952
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Population genetic evidence for cold adaptation in European Drosophila melanogaster populations.
    Božičević V; Hutter S; Stephan W; Wollstein A
    Mol Ecol; 2016 Mar; 25(5):1175-91. PubMed ID: 26558479
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transcriptome Analysis Reveals Candidate Genes for Cold Tolerance in Drosophila ananassae.
    Königer A; Grath S
    Genes (Basel); 2018 Dec; 9(12):. PubMed ID: 30545157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.