These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 27265056)
1. Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation. García M; Ródenas J; Alcaraz R; Rieta JJ Comput Methods Programs Biomed; 2016 Jul; 131():157-68. PubMed ID: 27265056 [TBL] [Abstract][Full Text] [Related]
2. Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Asgari S; Mehrnia A; Moussavi M Comput Biol Med; 2015 May; 60():132-42. PubMed ID: 25817534 [TBL] [Abstract][Full Text] [Related]
3. Ranking of the most reliable beat morphology and heart rate variability features for the detection of atrial fibrillation in short single-lead ECG. Christov I; Krasteva V; Simova I; Neycheva T; Schmid R Physiol Meas; 2018 Sep; 39(9):094005. PubMed ID: 30102603 [TBL] [Abstract][Full Text] [Related]
4. Wavelet leader multifractal analysis of heart rate variability in atrial fibrillation. Gadhoumi K; Do D; Badilini F; Pelter MM; Hu X J Electrocardiol; 2018; 51(6S):S83-S87. PubMed ID: 30177367 [TBL] [Abstract][Full Text] [Related]
5. Impact of the presence of noise on RR interval-based atrial fibrillation detection. Oster J; Clifford GD J Electrocardiol; 2015; 48(6):947-51. PubMed ID: 26358629 [TBL] [Abstract][Full Text] [Related]
6. Development of a toolbox for electrocardiogram-based interpretation of atrial fibrillation. Abächerli R; Leber R; Lemay M; Vesin JM; van Oosterom A; Schmid HJ; Kappenberger L J Electrocardiol; 2009; 42(6):517-21. PubMed ID: 19698953 [TBL] [Abstract][Full Text] [Related]
7. A Deep Learning Method to Detect Atrial Fibrillation Based on Continuous Wavelet Transform. Wu Z; Feng X; Yang C Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1908-1912. PubMed ID: 31946271 [TBL] [Abstract][Full Text] [Related]
8. Atrial Fibrillation Detection in Short Single Lead ECG Recordings Using Wavelet Transform and Artificial Neural Networks. Hernandez F; Mendez D; Amado L; Altuve M Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5982-5985. PubMed ID: 30441699 [TBL] [Abstract][Full Text] [Related]
9. A novel wavelet-based filtering strategy to remove powerline interference from electrocardiograms with atrial fibrillation. García M; Martínez-Iniesta M; Ródenas J; Rieta JJ; Alcaraz R Physiol Meas; 2018 Nov; 39(11):115006. PubMed ID: 30475747 [TBL] [Abstract][Full Text] [Related]
10. Automatic Detection of Short-Term Atrial Fibrillation Segments Based on Frequency Slice Wavelet Transform and Machine Learning Techniques. Yue Y; Chen C; Liu P; Xing Y; Zhou X Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450743 [TBL] [Abstract][Full Text] [Related]
12. Automated detection of atrial fibrillation episode using novel heart rate variability features. Gilani M; Eklund JM; Makrehchi M Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3461-3464. PubMed ID: 28269045 [TBL] [Abstract][Full Text] [Related]
13. Automatic real time detection of atrial fibrillation. Dash S; Chon KH; Lu S; Raeder EA Ann Biomed Eng; 2009 Sep; 37(9):1701-9. PubMed ID: 19533358 [TBL] [Abstract][Full Text] [Related]
14. Automatic Detection of Atrial Fibrillation Based on Continuous Wavelet Transform and 2D Convolutional Neural Networks. He R; Wang K; Zhao N; Liu Y; Yuan Y; Li Q; Zhang H Front Physiol; 2018; 9():1206. PubMed ID: 30214416 [TBL] [Abstract][Full Text] [Related]
15. The application of nonlinear metrics to assess organization differences in short recordings of paroxysmal and persistent atrial fibrillation. Alcaraz R; Rieta JJ Physiol Meas; 2010 Jan; 31(1):115-30. PubMed ID: 19946175 [TBL] [Abstract][Full Text] [Related]
16. Paroxysmal atrial fibrillation recognition based on multi-scale Rényi entropy of ECG. Xin Y; Zhao Y; Mu Y; Li Q; Shi C Technol Health Care; 2017 Jul; 25(S1):189-196. PubMed ID: 28582906 [TBL] [Abstract][Full Text] [Related]
17. Atrial fibrillatory rate and irregularity of ventricular response as predictors of clinical outcome in patients with atrial fibrillation. Platonov PG; Holmqvist F J Electrocardiol; 2011; 44(6):673-7. PubMed ID: 21907998 [TBL] [Abstract][Full Text] [Related]
18. Automatic Atrial Fibrillation detection: A novel approach using discrete wavelet transform and heart rate variability. Bruun IH; Hissabu SMS; Poulsen ES; Puthusserypady S Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3981-3984. PubMed ID: 29060769 [TBL] [Abstract][Full Text] [Related]