These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 27265322)

  • 1. It's all about functionality: How can metaproteomics help us to discuss the attributes of ecological relevance in soil?
    Bastida F; Jehmlich N
    J Proteomics; 2016 Jul; 144():159-61. PubMed ID: 27265322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Applications of soil metaproteomics in soil pollution assessment: a review].
    Zhang X; Li F; Liu TT; Chen YX
    Ying Yong Sheng Tai Xue Bao; 2012 Oct; 23(10):2923-30. PubMed ID: 23359959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soil and leaf litter metaproteomics-a brief guideline from sampling to understanding.
    Keiblinger KM; Fuchs S; Zechmeister-Boltenstern S; Riedel K
    FEMS Microbiol Ecol; 2016 Nov; 92(11):. PubMed ID: 27549116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metaproteomics of soils from semiarid environment: functional and phylogenetic information obtained with different protein extraction methods.
    Bastida F; Hernández T; García C
    J Proteomics; 2014 Apr; 101():31-42. PubMed ID: 24530626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using proteins to study how microbes contribute to soil ecosystem services: The current state and future perspectives of soil metaproteomics.
    Starke R; Jehmlich N; Bastida F
    J Proteomics; 2019 Apr; 198():50-58. PubMed ID: 30445181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate shapes the protein abundance of dominant soil bacteria.
    Bastida F; Crowther TW; Prieto I; Routh D; García C; Jehmlich N
    Sci Total Environ; 2018 Nov; 640-641():18-21. PubMed ID: 29852443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil restoration with organic amendments: linking cellular functionality and ecosystem processes.
    Bastida F; Selevsek N; Torres IF; Hernández T; García C
    Sci Rep; 2015 Oct; 5():15550. PubMed ID: 26503516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metaproteomics to unravel major microbial players in leaf litter and soil environments: challenges and perspectives.
    Becher D; Bernhardt J; Fuchs S; Riedel K
    Proteomics; 2013 Oct; 13(18-19):2895-909. PubMed ID: 23894095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of metaproteomics in crop rhizospheric soil.
    Wang HB; Zhang ZX; Li H; He HB; Fang CX; Zhang AJ; Li QS; Chen RS; Guo XK; Lin HF; Wu LK; Lin S; Chen T; Lin RY; Peng XX; Lin WX
    J Proteome Res; 2011 Mar; 10(3):932-40. PubMed ID: 21142081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of a Detergent-Based Method for Direct Microbial Cellular Lysis/Proteome Extraction from Soil Samples for Metaproteomics Studies.
    Chourey K; Hettich RL
    Methods Mol Biol; 2018; 1841():293-302. PubMed ID: 30259494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Native plant resources to optimize the performances of forest rehabilitation in Mediterranean and tropical environment: some examples of nursing plant species that improve the soil mycorrhizal potential].
    Duponnois R; Ramanankierana H; Hafidi M; Baohanta R; Baudoin E; Thioulouse J; Sanguin H; Bâ A; Galiana A; Bally R; Lebrun M; Prin Y
    C R Biol; 2013; 336(5-6):265-72. PubMed ID: 23916201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil biochemical properties and microbial resilience in agroforestry systems: effects on wheat growth under controlled drought and flooding conditions.
    Rivest D; Lorente M; Olivier A; Messier C
    Sci Total Environ; 2013 Oct; 463-464():51-60. PubMed ID: 23792247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A decade of metaproteomics: where we stand and what the future holds.
    Wilmes P; Heintz-Buschart A; Bond PL
    Proteomics; 2015 Oct; 15(20):3409-17. PubMed ID: 26315987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resilience vs. historical contingency in microbial responses to environmental change.
    Hawkes CV; Keitt TH
    Ecol Lett; 2015 Jul; 18(7):612-25. PubMed ID: 25950733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct cellular lysis/protein extraction protocol for soil metaproteomics.
    Chourey K; Jansson J; VerBerkmoes N; Shah M; Chavarria KL; Tom LM; Brodie EL; Hettich RL
    J Proteome Res; 2010 Dec; 9(12):6615-22. PubMed ID: 20954746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil Metaproteomics for the Study of the Relationships Between Microorganisms and Plants: A Review of Extraction Protocols and Ecological Insights.
    Tartaglia M; Bastida F; Sciarrillo R; Guarino C
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33187080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing metaproteomics--The value of models and defined environmental microbial systems.
    Herbst FA; Lünsmann V; Kjeldal H; Jehmlich N; Tholey A; von Bergen M; Nielsen JL; Hettich RL; Seifert J; Nielsen PH
    Proteomics; 2016 Mar; 16(5):783-98. PubMed ID: 26621789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil microbial community response to land use change in an agricultural landscape of western Kenya.
    Bossio DA; Girvan MS; Verchot L; Bullimore J; Borelli T; Albrecht A; Scow KM; Ball AS; Pretty JN; Osborn AM
    Microb Ecol; 2005 Jan; 49(1):50-62. PubMed ID: 15690227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abundance and Diversity of CO2-Assimilating Bacteria and Algae Within Red Agricultural Soils Are Modulated by Changing Management Practice.
    Yuan H; Ge T; Chen X; Liu S; Zhu Z; Wu X; Wei W; Whiteley AS; Wu J
    Microb Ecol; 2015 Nov; 70(4):971-80. PubMed ID: 25956939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metaproteomics: studying functional gene expression in microbial ecosystems.
    Wilmes P; Bond PL
    Trends Microbiol; 2006 Feb; 14(2):92-7. PubMed ID: 16406790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.