These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 27265685)

  • 1. 2-Aryl-8-aza-3-deazaadenosine analogues of 5'-O-[N-(salicyl)sulfamoyl]adenosine: Nucleoside antibiotics that block siderophore biosynthesis in Mycobacterium tuberculosis.
    Krajczyk A; Zeidler J; Januszczyk P; Dawadi S; Boshoff HI; Barry CE; Ostrowski T; Aldrich CC
    Bioorg Med Chem; 2016 Jul; 24(14):3133-43. PubMed ID: 27265685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of siderophore biosynthesis in Mycobacterium tuberculosis with nucleoside bisubstrate analogues: structure-activity relationships of the nucleobase domain of 5'-O-[N-(salicyl)sulfamoyl]adenosine.
    Neres J; Labello NP; Somu RV; Boshoff HI; Wilson DJ; Vannada J; Chen L; Barry CE; Bennett EM; Aldrich CC
    J Med Chem; 2008 Sep; 51(17):5349-70. PubMed ID: 18690677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of chromone, quinolone, and benzoxazinone sulfonamide nucleosides as conformationally constrained inhibitors of adenylating enzymes required for siderophore biosynthesis.
    Engelhart CA; Aldrich CC
    J Org Chem; 2013 Aug; 78(15):7470-81. PubMed ID: 23805993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5'-O-[(N-acyl)sulfamoyl]adenosines as antitubercular agents that inhibit MbtA: an adenylation enzyme required for siderophore biosynthesis of the mycobactins.
    Qiao C; Gupte A; Boshoff HI; Wilson DJ; Bennett EM; Somu RV; Barry CE; Aldrich CC
    J Med Chem; 2007 Nov; 50(24):6080-94. PubMed ID: 17967002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of siderophore biosynthesis by 2-triazole substituted analogues of 5'-O-[N-(salicyl)sulfamoyl]adenosine: antibacterial nucleosides effective against Mycobacterium tuberculosis.
    Gupte A; Boshoff HI; Wilson DJ; Neres J; Labello NP; Somu RV; Xing C; Barry CE; Aldrich CC
    J Med Chem; 2008 Dec; 51(23):7495-507. PubMed ID: 19053762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic Analyses of the Siderophore Biosynthesis Inhibitor Salicyl-AMS and Analogues as MbtA Inhibitors and Antimycobacterial Agents.
    Bythrow GV; Mohandas P; Guney T; Standke LC; Germain GA; Lu X; Ji C; Levendosky K; Chavadi SS; Tan DS; Quadri LEN
    Biochemistry; 2019 Feb; 58(6):833-847. PubMed ID: 30582694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antitubercular nucleosides that inhibit siderophore biosynthesis: SAR of the glycosyl domain.
    Somu RV; Wilson DJ; Bennett EM; Boshoff HI; Celia L; Beck BJ; Barry CE; Aldrich CC
    J Med Chem; 2006 Dec; 49(26):7623-35. PubMed ID: 17181146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and Pharmacokinetic Evaluation of Siderophore Biosynthesis Inhibitors for Mycobacterium tuberculosis.
    Nelson KM; Viswanathan K; Dawadi S; Duckworth BP; Boshoff HI; Barry CE; Aldrich CC
    J Med Chem; 2015 Jul; 58(14):5459-75. PubMed ID: 26110337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation and conformational analysis of fluorinated nucleoside antibiotics targeting siderophore biosynthesis.
    Dawadi S; Viswanathan K; Boshoff HI; Barry CE; Aldrich CC
    J Org Chem; 2015 May; 80(10):4835-50. PubMed ID: 25916415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a selective activity-based probe for adenylating enzymes: profiling MbtA Involved in siderophore biosynthesis from Mycobacterium tuberculosis.
    Duckworth BP; Wilson DJ; Nelson KM; Boshoff HI; Barry CE; Aldrich CC
    ACS Chem Biol; 2012 Oct; 7(10):1653-8. PubMed ID: 22796950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rationally designed nucleoside antibiotics that inhibit siderophore biosynthesis of Mycobacterium tuberculosis.
    Somu RV; Boshoff H; Qiao C; Bennett EM; Barry CE; Aldrich CC
    J Med Chem; 2006 Jan; 49(1):31-4. PubMed ID: 16392788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of aryl acid adenylation domains involved in bacterial siderophore synthesis.
    Miethke M; Bisseret P; Beckering CL; Vignard D; Eustache J; Marahiel MA
    FEBS J; 2006 Jan; 273(2):409-19. PubMed ID: 16403027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive models for nucleoside bisubstrate analogs as inhibitors of siderophore biosynthesis in Mycobacterium tuberculosis: pharmacophore mapping and chemometric QSAR study.
    Tawari NR; Degani MS
    Mol Divers; 2011 May; 15(2):435-44. PubMed ID: 20306296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis.
    Ferreras JA; Ryu JS; Di Lello F; Tan DS; Quadri LE
    Nat Chem Biol; 2005 Jun; 1(1):29-32. PubMed ID: 16407990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis, and biological evaluation of beta-ketosulfonamide adenylation inhibitors as potential antitubercular agents.
    Vannada J; Bennett EM; Wilson DJ; Boshoff HI; Barry CE; Aldrich CC
    Org Lett; 2006 Oct; 8(21):4707-10. PubMed ID: 17020283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated Target-Based and Phenotypic Screening Approaches for the Identification of Anti-Tubercular Agents That Bind to the Mycobacterial Adenylating Enzyme MbtA.
    Ferguson L; Wells G; Bhakta S; Johnson J; Guzman J; Parish T; Prentice RA; Brucoli F
    ChemMedChem; 2019 Oct; 14(19):1735-1741. PubMed ID: 31454170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and pharmacological evaluation of nucleoside prodrugs designed to target siderophore biosynthesis in Mycobacterium tuberculosis.
    Dawadi S; Kawamura S; Rubenstein A; Remmel R; Aldrich CC
    Bioorg Med Chem; 2016 Mar; 24(6):1314-21. PubMed ID: 26875934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aryl acid adenylating enzymes involved in siderophore biosynthesis: fluorescence polarization assay, ligand specificity, and discovery of non-nucleoside inhibitors via high-throughput screening.
    Neres J; Wilson DJ; Celia L; Beck BJ; Aldrich CC
    Biochemistry; 2008 Nov; 47(45):11735-49. PubMed ID: 18928302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Avoiding Antibiotic Inactivation in Mycobacterium tuberculosis by Rv3406 through Strategic Nucleoside Modification.
    Bockman MR; Engelhart CA; Dawadi S; Larson P; Tiwari D; Ferguson DM; Schnappinger D; Aldrich CC
    ACS Infect Dis; 2018 Jul; 4(7):1102-1113. PubMed ID: 29663798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-translational Acetylation of MbtA Modulates Mycobacterial Siderophore Biosynthesis.
    Vergnolle O; Xu H; Tufariello JM; Favrot L; Malek AA; Jacobs WR; Blanchard JS
    J Biol Chem; 2016 Oct; 291(42):22315-22326. PubMed ID: 27566542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.