These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 27265850)

  • 1. Mechanism of Amyloidogenesis of a Bacterial AAA+ Chaperone.
    Chan SW; Yau J; Ing C; Liu K; Farber P; Won A; Bhandari V; Kara-Yacoubian N; Seraphim TV; Chakrabarti N; Kay LE; Yip CM; Pomès R; Sharpe S; Houry WA
    Structure; 2016 Jul; 24(7):1095-109. PubMed ID: 27265850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of RavA MoxR AAA+ protein reveals the design principles of a molecular cage modulating the inducible lysine decarboxylase activity.
    El Bakkouri M; Gutsche I; Kanjee U; Zhao B; Yu M; Goret G; Schoehn G; Burmeister WP; Houry WA
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22499-504. PubMed ID: 21148420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The RavA-ViaA Chaperone-Like System Interacts with and Modulates the Activity of the Fumarate Reductase Respiratory Complex.
    Wong KS; Bhandari V; Janga SC; Houry WA
    J Mol Biol; 2017 Jan; 429(2):324-344. PubMed ID: 27979649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into the Escherichia coli lysine decarboxylases and molecular determinants of interaction with the AAA+ ATPase RavA.
    Kandiah E; Carriel D; Perard J; Malet H; Bacia M; Liu K; Chan SW; Houry WA; Ollagnier de Choudens S; Elsen S; Gutsche I
    Sci Rep; 2016 Apr; 6():24601. PubMed ID: 27080013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of a distinctive complex between the inducible bacterial lysine decarboxylase and a novel AAA+ ATPase.
    Snider J; Gutsche I; Lin M; Baby S; Cox B; Butland G; Greenblatt J; Emili A; Houry WA
    J Biol Chem; 2006 Jan; 281(3):1532-46. PubMed ID: 16301313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. M60-like metalloprotease domain of the Escherichia coli YghJ protein forms amyloid fibrils.
    Belousov MV; Bondarev SA; Kosolapova AO; Antonets KS; Sulatskaya AI; Sulatsky MI; Zhouravleva GA; Kuznetsova IM; Turoverov KK; Nizhnikov AA
    PLoS One; 2018; 13(1):e0191317. PubMed ID: 29381728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly principles of a unique cage formed by hexameric and decameric E. coli proteins.
    Malet H; Liu K; El Bakkouri M; Chan SW; Effantin G; Bacia M; Houry WA; Gutsche I
    Elife; 2014 Aug; 3():e03653. PubMed ID: 25097238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution NMR structure of CsgE: Structural insights into a chaperone and regulator protein important for functional amyloid formation.
    Shu Q; Krezel AM; Cusumano ZT; Pinkner JS; Klein R; Hultgren SJ; Frieden C
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7130-5. PubMed ID: 27298344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Searching for conditions to form stable protein oligomers with amyloid-like characteristics: The unexplored basic pH.
    Ahmad B; Winkelmann J; Tiribilli B; Chiti F
    Biochim Biophys Acta; 2010 Jan; 1804(1):223-34. PubMed ID: 19836473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1.
    Leodolter J; Warweg J; Weber-Ban E
    PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational Priming of RepA-WH1 for Functional Amyloid Conversion Detected by NMR Spectroscopy.
    Pantoja-Uceda D; Oroz J; Fernández C; de Alba E; Giraldo R; Laurents DV
    Structure; 2020 Mar; 28(3):336-347.e4. PubMed ID: 31918960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative regulation of AAA + ATPase assembly by two component receiver domains: a transcription activation mechanism that is conserved in mesophilic and extremely hyperthermophilic bacteria.
    Doucleff M; Chen B; Maris AE; Wemmer DE; Kondrashkina E; Nixon BT
    J Mol Biol; 2005 Oct; 353(2):242-55. PubMed ID: 16169010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The RavA-ViaA chaperone complex modulates bacterial persistence through its association with the fumarate reductase enzyme.
    Bhandari V; Reichheld SE; Houliston S; Lemak A; Arrowsmith CH; Sharpe S; Houry WA
    J Biol Chem; 2023 Oct; 299(10):105199. PubMed ID: 37660904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of E. coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1) and mechanistic studies on ClpB ATPase activity.
    Li J; Sha B
    J Mol Biol; 2002 May; 318(4):1127-37. PubMed ID: 12054807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. M domains couple the ClpB threading motor with the DnaK chaperone activity.
    Haslberger T; Weibezahn J; Zahn R; Lee S; Tsai FT; Bukau B; Mogk A
    Mol Cell; 2007 Jan; 25(2):247-60. PubMed ID: 17244532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring critical determinants of protein amyloidogenesis: a review.
    Sarkar N; Dubey VK
    J Pept Sci; 2013 Sep; 19(9):529-36. PubMed ID: 23873708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of dimeric SecA, the Escherichia coli preprotein translocase motor.
    Papanikolau Y; Papadovasilaki M; Ravelli RB; McCarthy AA; Cusack S; Economou A; Petratos K
    J Mol Biol; 2007 Mar; 366(5):1545-57. PubMed ID: 17229438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone.
    Thibault G; Tsitrin Y; Davidson T; Gribun A; Houry WA
    EMBO J; 2006 Jul; 25(14):3367-76. PubMed ID: 16810315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The MoxR ATPase RavA and its cofactor ViaA interact with the NADH:ubiquinone oxidoreductase I in Escherichia coli.
    Wong KS; Snider JD; Graham C; Greenblatt JF; Emili A; Babu M; Houry WA
    PLoS One; 2014; 9(1):e85529. PubMed ID: 24454883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK.
    Landry SJ
    Biochemistry; 2003 May; 42(17):4926-36. PubMed ID: 12718534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.