These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 27266679)

  • 1. Water Diffusion Dependence on Amphiphilic Block Design in (Amphiphilic-Hydrophobic) Diblock Copolymer Membranes.
    Dorenbos G
    J Phys Chem B; 2016 Jun; 120(25):5634-45. PubMed ID: 27266679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence of Solvent Diffusion on Hydrophobic Block Length within Amphiphilic-Hydrophobic Block Copolymer Membranes.
    Dorenbos G
    J Phys Chem B; 2016 Dec; 120(51):13102-13111. PubMed ID: 27976579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving proton conduction pathways in di- and triblock copolymer membranes: Branched versus linear side chains.
    Dorenbos G
    J Chem Phys; 2017 Jun; 146(24):244909. PubMed ID: 28668060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water diffusion within hydrated model grafted polymeric membranes with bimodal side chain length distributions.
    Dorenbos G
    Soft Matter; 2015 Apr; 11(14):2794-805. PubMed ID: 25703230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Searching for low percolation thresholds within amphiphilic polymer membranes: The effect of side chain branching.
    Dorenbos G
    J Chem Phys; 2015 Jun; 142(22):224902. PubMed ID: 26071726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pore morphologies and diffusion within hydrated polyelectrolyte membranes: homogeneous vs heterogeneous and random side chain attachment.
    Dorenbos G; Morohoshi K
    J Chem Phys; 2013 Feb; 138(6):064902. PubMed ID: 23425488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-surface activity and micellization of ionic amphiphilic diblock copolymers in water. Hydrophobic chain length dependence and salt effect on surface activity and the critical micelle concentration.
    Kaewsaiha P; Matsumoto K; Matsuoka H
    Langmuir; 2005 Oct; 21(22):9938-45. PubMed ID: 16229512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption kinetics of amphiphilic diblock copolymers: from kinetically frozen colloids to macrosurfactants.
    Theodoly O; Jacquin M; Muller P; Chhun S
    Langmuir; 2009 Jan; 25(2):781-93. PubMed ID: 19177645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of hydrophobic-amphiphilic diblock copolymers in solution.
    Pavlenko SA; Larin DE; Govorun EN
    J Phys Condens Matter; 2022 Jan; 34(12):. PubMed ID: 34942610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregate morphologies of amphiphilic ABC triblock copolymer in dilute solution using self-consistent field theory.
    Wang R; Tang P; Qiu F; Yang Y
    J Phys Chem B; 2005 Sep; 109(36):17120-7. PubMed ID: 16853184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micelle formation and gelation of (PEG-P(MA-POSS)) amphiphilic block copolymers via associative hydrophobic effects.
    Hussain H; Tan BH; Seah GL; Liu Y; He CB; Davis TP
    Langmuir; 2010 Jul; 26(14):11763-73. PubMed ID: 20536258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coarse-grained model of nanoscale segregation, water diffusion, and proton transport in Nafion membranes.
    Vishnyakov A; Mao R; Lee MT; Neimark AV
    J Chem Phys; 2018 Jan; 148(2):024108. PubMed ID: 29331134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse-grained model of water diffusion and proton conductivity in hydrated polyelectrolyte membrane.
    Lee MT; Vishnyakov A; Neimark AV
    J Chem Phys; 2016 Jan; 144(1):014902. PubMed ID: 26747818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissipative Particle Dynamics Modeling of Polyelectrolyte Membrane-Water Interfaces.
    Sengupta S; Lyulin A
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32295222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly of amphiphilic ABC star triblock copolymers and their blends with AB diblock copolymers in solution: self-consistent field theory simulations.
    Ma JW; Li X; Tang P; Yang Y
    J Phys Chem B; 2007 Feb; 111(7):1552-8. PubMed ID: 17266363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulation of architectural and molecular weight effects on the assembly of amphiphilic linear-dendritic block copolymers in solution.
    Suek NW; Lamm MH
    Langmuir; 2008 Apr; 24(7):3030-6. PubMed ID: 18288872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly.
    Spaeth JR; Kevrekidis IG; Panagiotopoulos AZ
    J Chem Phys; 2011 Nov; 135(18):184903. PubMed ID: 22088077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionization of amphiphilic acidic block copolymers.
    Colombani O; Lejeune E; Charbonneau C; Chassenieux C; Nicolai T
    J Phys Chem B; 2012 Jun; 116(25):7560-5. PubMed ID: 22657154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of sarin with polyelectrolyte membranes: a molecular dynamics simulation study.
    Lee MT; Vishnyakov A; Gor GY; Neimark AV
    J Phys Chem B; 2013 Jan; 117(1):365-72. PubMed ID: 23205740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chain length dependence of non-surface activity and micellization behavior of cationic amphiphilic diblock copolymers.
    Ghosh A; Yusa S; Matsuoka H; Saruwatari Y
    Langmuir; 2014 Apr; 30(12):3319-28. PubMed ID: 24611761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.