These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 27266819)

  • 61. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting.
    Kumarasiri A; Siddiqui F; Liu C; Yechieli R; Shah M; Pradhan D; Zhong H; Chetty IJ; Kim J
    Med Phys; 2014 Dec; 41(12):121712. PubMed ID: 25471959
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Analysis of the setup errors of medical image registration-based cone-beam CT for lung cancer.
    Li J; Tang XB; Zhang XZ; Zhang XW; Ge Y; Chen D; Chai L
    J Xray Sci Technol; 2016 Apr; 24(4):521-30. PubMed ID: 27061797
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Clinical utility of integrated positron emission tomography/computed tomography imaging in the clinical management and radiation treatment planning of locally advanced rectal cancer.
    Whaley JT; Fernandes AT; Sackmann R; Plastaras JP; Teo BK; Grover S; Perini RF; Metz JM; Pryma DA; Apisarnthanarax S
    Pract Radiat Oncol; 2014; 4(4):226-32. PubMed ID: 25012830
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ablative margin quantification using deformable versus rigid image registration in colorectal liver metastasis thermal ablation: a retrospective single-center study.
    Lin YM; Paolucci I; Albuquerque Marques Silva J; O'Connor CS; Hong J; Shah KY; Abdelsalam ME; Habibollahi P; Jones KA; Brock KK; Odisio BC
    Eur Radiol; 2024 Sep; 34(9):5541-5550. PubMed ID: 38334762
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Biomechanical modeling of neck flexion for deformable alignment of the salivary glands in head and neck cancer images.
    McCulloch MM; Anderson BM; Cazoulat G; Peterson CB; Mohamed ASR; Volpe S; Elhalawani H; Bahig H; Rigaud B; King JB; Ford AC; Fuller CD; Brock KK
    Phys Med Biol; 2019 Sep; 64(17):175018. PubMed ID: 31269475
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A strategy for multimodal deformable image registration to integrate PET/MR into radiotherapy treatment planning.
    Leibfarth S; Mönnich D; Welz S; Siegel C; Schwenzer N; Schmidt H; Zips D; Thorwarth D
    Acta Oncol; 2013 Oct; 52(7):1353-9. PubMed ID: 23879651
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging.
    Scarfone C; Lavely WC; Cmelak AJ; Delbeke D; Martin WH; Billheimer D; Hallahan DE
    J Nucl Med; 2004 Apr; 45(4):543-52. PubMed ID: 15073248
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Comparison of rigid and adaptive methods of propagating gross tumor volume through respiratory phases of four-dimensional computed tomography image data set.
    Ezhil M; Choi B; Starkschall G; Bucci MK; Vedam S; Balter P
    Int J Radiat Oncol Biol Phys; 2008 May; 71(1):290-6. PubMed ID: 18406893
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Quality assurance assessment of diagnostic and radiation therapy-simulation CT image registration for head and neck radiation therapy: anatomic region of interest-based comparison of rigid and deformable algorithms.
    Mohamed AS; Ruangskul MN; Awan MJ; Baron CA; Kalpathy-Cramer J; Castillo R; Castillo E; Guerrero TM; Kocak-Uzel E; Yang J; Court LE; Kantor ME; Gunn GB; Colen RR; Frank SJ; Garden AS; Rosenthal DI; Fuller CD
    Radiology; 2015 Mar; 274(3):752-63. PubMed ID: 25380454
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Improvement Prediction on Contour Deformation Accuracy Using Deformable Image Registration Results Compared to Rigid Image Registration Results].
    Kaido R; Takemura A; Osawa T; Noto K; Kojima H; Isomura N; Ueda S
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2020; 76(7):665-673. PubMed ID: 32684559
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Improving observer variability in target delineation for gastro-oesophageal cancer--the role of (18F)fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography.
    Vesprini D; Ung Y; Dinniwell R; Breen S; Cheung F; Grabarz D; Kamra J; Mah K; Mansouri A; Pond G; Brock K; Darling G; Knox J; Haider M; Wong RK
    Clin Oncol (R Coll Radiol); 2008 Oct; 20(8):631-8. PubMed ID: 18755578
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Geometrical differences in target volumes based on 18F-fluorodeoxyglucose positron emission tomography/computed tomography and four-dimensional computed tomography maximum intensity projection images of primary thoracic esophageal cancer.
    Guo Y; Li J; Wang W; Zhang Y; Wang J; Duan Y; Shang D; Fu Z
    Dis Esophagus; 2014; 27(8):744-50. PubMed ID: 24915760
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Reconstruction of 3D lung models from 2D planning data sets for Hodgkin's lymphoma patients using combined deformable image registration and navigator channels.
    Ng A; Nguyen TN; Moseley JL; Hodgson DC; Sharpe MB; Brock KK
    Med Phys; 2010 Mar; 37(3):1017-28. PubMed ID: 20384237
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Display of positron emission tomography with Cadplan.
    Ackerly T; Andrews J; Ball D; Binns D; Clark R; D'Costa I; Hicks RJ; Kenny M; Lau E; MacManus M; Song G
    Australas Phys Eng Sci Med; 2002 Jul; 25(2):67-77. PubMed ID: 12219847
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Impact of hybrid fluorodeoxyglucose positron-emission tomography/computed tomography on radiotherapy planning in esophageal and non-small-cell lung cancer.
    Gondi V; Bradley K; Mehta M; Howard A; Khuntia D; Ritter M; Tomé W
    Int J Radiat Oncol Biol Phys; 2007 Jan; 67(1):187-95. PubMed ID: 17189070
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Comparison of gross target volumes based on four-dimensional CT, positron emission tomography-computed tomography, and magnetic resonance imaging in thoracic esophageal cancer.
    Li H; Li F; Li J; Zhu Y; Zhang Y; Guo Y; Xu M; Shao Q; Liu X
    Cancer Med; 2020 Aug; 9(15):5353-5361. PubMed ID: 32510183
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Correlation between fluorodeoxyglucose hotspots on preradiotherapy PET/CT and areas of cancer local relapse: Systematic review of literature.
    Abgral R; Bourhis D; Calais J; Lucia F; Leclère JC; Salaün PY; Vera P; Schick U
    Cancer Radiother; 2020 Aug; 24(5):444-452. PubMed ID: 32620457
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evaluating the impact of a rigid and a deformable registration method of pre-treatment images for hypoxia-based dose painting.
    Lazzeroni M; Ureba A; Rosenberg V; Schäfer H; Rühle A; Baltas D; Toma-Dasu I; Grosu AL
    Phys Med; 2024 Jun; 122():103376. PubMed ID: 38772061
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Impact of computed tomography (CT) and 18F-deoxyglucose positron emission tomography (FDG-PET) image fusion for conformal radiotherapy in esophageal carcinoma].
    Moureau-Zabotto L; Touboul E; Lerouge D; Deniaud-Alexandre E; Grahek D; Foulquier JN; Petenief Y; Grès B; El Balaa H; Kerrou K; Montravers F; Keraudy K; Tiret E; Gendre JP; Grange JD; Hourry S; Talbot JN
    Cancer Radiother; 2005 May; 9(3):152-60. PubMed ID: 16023043
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Accuracy of eight deformable image registration (DIR) methods for tomotherapy megavoltage computed tomography (MVCT) images.
    Nobnop W; Neamin H; Chitapanarux I; Wanwilairat S; Lorvidhaya V; Sanghangthum T
    J Med Radiat Sci; 2017 Dec; 64(4):290-298. PubMed ID: 28755425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.