These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2726745)

  • 1. Lithium evokes expression of vegetal-specific molecules in the animal blastomeres of sea urchin embryos.
    Livingston BT; Wilt FH
    Proc Natl Acad Sci U S A; 1989 May; 86(10):3669-73. PubMed ID: 2726745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Range and stability of cell fate determination in isolated sea urchin blastomeres.
    Livingston BT; Wilt FH
    Development; 1990 Mar; 108(3):403-10. PubMed ID: 2160367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo.
    Wikramanayake AH; Huang L; Klein WH
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9343-8. PubMed ID: 9689082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lineage and fate of each blastomere of the eight-cell sea urchin embryo.
    Cameron RA; Hough-Evans BR; Britten RJ; Davidson EH
    Genes Dev; 1987 Mar; 1(1):75-85. PubMed ID: 2448185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo.
    Logan CY; Miller JR; Ferkowicz MJ; McClay DR
    Development; 1999 Jan; 126(2):345-57. PubMed ID: 9847248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered expression of spatially regulated embryonic genes in the progeny of separated sea urchin blastomeres.
    Hurley DL; Angerer LM; Angerer RC
    Development; 1989 Jul; 106(3):567-79. PubMed ID: 2480880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole mount in situ hybridization shows Endo 16 to be a marker for the vegetal plate territory in sea urchin embryos.
    Ransick A; Ernst S; Britten RJ; Davidson EH
    Mech Dev; 1993 Aug; 42(3):117-24. PubMed ID: 8217840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential regulation of disheveled in a novel vegetal cortical domain in sea urchin eggs and embryos: implications for the localized activation of canonical Wnt signaling.
    Peng CJ; Wikramanayake AH
    PLoS One; 2013; 8(11):e80693. PubMed ID: 24236196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered cell fate in LiCl-treated sea urchin embryos.
    Nocente-McGrath C; McIsaac R; Ernst SG
    Dev Biol; 1991 Oct; 147(2):445-50. PubMed ID: 1717326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis.
    Vonica A; Weng W; Gumbiner BM; Venuti JM
    Dev Biol; 2000 Jan; 217(2):230-43. PubMed ID: 10625549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled.
    Weitzel HE; Illies MR; Byrum CA; Xu R; Wikramanayake AH; Ettensohn CA
    Development; 2004 Jun; 131(12):2947-56. PubMed ID: 15151983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early inductive interactions are involved in restricting cell fates of mesomeres in sea urchin embryos.
    Henry JJ; Amemiya S; Wray GA; Raff RA
    Dev Biol; 1989 Nov; 136(1):140-53. PubMed ID: 2806717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental potential of muscle cell progenitors and the myogenic factor SUM-1 in the sea urchin embryo.
    Venuti JM; Gan L; Kozlowski MT; Klein WH
    Mech Dev; 1993 Apr; 41(1):3-14. PubMed ID: 8389581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wnt signaling in the early sea urchin embryo.
    Kumburegama S; Wikramanayake AH
    Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of dorso-ventral axis in early embryos of the sea urchin, Hemicentrotus pulcherrimus.
    Kominami T
    Dev Biol; 1988 May; 127(1):187-96. PubMed ID: 3360211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early gene expression along the animal-vegetal axis in sea urchin embryoids and grafted embryos.
    Ghiglione C; Emily-Fenouil F; Chang P; Gache C
    Development; 1996 Oct; 122(10):3067-74. PubMed ID: 8898220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species.
    Wikramanayake AH; Brandhorst BP; Klein WH
    Development; 1995 May; 121(5):1497-505. PubMed ID: 7789279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary change in the process of dorsoventral axis determination in the direct developing sea urchin, Heliocidaris erythrogramma.
    Henry JJ; Raff RA
    Dev Biol; 1990 Sep; 141(1):55-69. PubMed ID: 2391006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiation of membrane excitability in isolated cleavage-arrested blastomeres from early ascidian embryos.
    Okado H; Takahashi K
    J Physiol; 1990 Aug; 427():583-602. PubMed ID: 2213608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.