These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 27267575)

  • 41. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties.
    Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM
    Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of geometry and microstructure of honeycomb TCP scaffolds on bone regeneration.
    Takabatake K; Yamachika E; Tsujigiwa H; Takeda Y; Kimura M; Takagi S; Nagatsuka H; Iida S
    J Biomed Mater Res A; 2014 Sep; 102(9):2952-60. PubMed ID: 24115688
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rapid prototyping technology and its application in bone tissue engineering.
    Yuan B; Zhou SY; Chen XS
    J Zhejiang Univ Sci B; 2017 Apr.; 18(4):303-315. PubMed ID: 28378568
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects.
    Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A
    J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering.
    Lowe B; Venkatesan J; Anil S; Shim MS; Kim SK
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1479-1487. PubMed ID: 26921504
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Silver nanoparticle studded porous polyethylene scaffolds: bacteria struggle to grow on them while mammalian cells thrive.
    D'Britto V; Kapse H; Babrekar H; Prabhune AA; Bhoraskar SV; Premnath V; Prasad BL
    Nanoscale; 2011 Jul; 3(7):2957-63. PubMed ID: 21643585
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Safety and efficacy of composite collagen-silver nanoparticle hydrogels as tissue engineering scaffolds.
    Alarcon EI; Udekwu KI; Noel CW; Gagnon LB; Taylor PK; Vulesevic B; Simpson MJ; Gkotzis S; Islam MM; Lee CJ; Richter-Dahlfors A; Mah TF; Suuronen EJ; Scaiano JC; Griffith M
    Nanoscale; 2015 Nov; 7(44):18789-98. PubMed ID: 26507748
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds.
    Sanzana ES; Navarro M; Ginebra MP; Planell JA; Ojeda AC; Montecinos HA
    J Biomed Mater Res A; 2014 Jun; 102(6):1767-73. PubMed ID: 23813739
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering.
    Saravanan S; Nethala S; Pattnaik S; Tripathi A; Moorthi A; Selvamurugan N
    Int J Biol Macromol; 2011 Aug; 49(2):188-93. PubMed ID: 21549747
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Production and characterization of chitosan/gelatin/β-TCP scaffolds for improved bone tissue regeneration.
    Serra IR; Fradique R; Vallejo MC; Correia TR; Miguel SP; Correia IJ
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():592-604. PubMed ID: 26117793
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity.
    Kaviya S; Santhanalakshmi J; Viswanathan B; Muthumary J; Srinivasan K
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug; 79(3):594-8. PubMed ID: 21536485
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Properties of novel polyvinyl alcohol/cellulose nanocrystals/silver nanoparticles blend membranes.
    Xu X; Yang YQ; Xing YY; Yang JF; Wang SF
    Carbohydr Polym; 2013 Nov; 98(2):1573-7. PubMed ID: 24053842
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-dimensionally printed polycaprolactone and β-tricalcium phosphate scaffolds for bone tissue engineering: an in vitro study.
    Sharaf B; Faris CB; Abukawa H; Susarla SM; Vacanti JP; Kaban LB; Troulis MJ
    J Oral Maxillofac Surg; 2012 Mar; 70(3):647-56. PubMed ID: 22079064
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.
    Rosa AL; de Oliveira PT; Beloti MM
    Expert Rev Med Devices; 2008 Nov; 5(6):719-28. PubMed ID: 19025348
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nano-hydroxyapatite/β-tricalcium phosphate ceramics scaffolds loaded with cationic liposomal ceftazidime: preparation, release characteristics in vitro and inhibition to Staphylococcus aureus biofilms.
    Zhou TH; Su M; Shang BC; Ma T; Xu GL; Li HL; Chen QH; Sun W; Xu YQ
    Drug Dev Ind Pharm; 2012 Nov; 38(11):1298-304. PubMed ID: 22257380
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Alginate-based composite sponge containing silver nanoparticles synthesized in situ.
    Seo SY; Lee GH; Lee SG; Jung SY; Lim JO; Choi JH
    Carbohydr Polym; 2012 Sep; 90(1):109-15. PubMed ID: 24751017
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering - A mini review.
    Kuttappan S; Mathew D; Nair MB
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1390-1401. PubMed ID: 27316767
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Silver-nanoparticles increase bactericidal activity and radical oxygen responses against bacterial pathogens in human osteoclasts.
    Aurore V; Caldana F; Blanchard M; Kharoubi Hess S; Lannes N; Mantel PY; Filgueira L; Walch M
    Nanomedicine; 2018 Feb; 14(2):601-607. PubMed ID: 29155361
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering.
    Yang SY; Hwang TH; Che L; Oh JS; Ha Y; Ryu W
    Biomed Mater; 2015 Jun; 10(3):035011. PubMed ID: 26106926
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity.
    Lee SJ; Heo DN; Moon JH; Ko WK; Lee JB; Bae MS; Park SW; Kim JE; Lee DH; Kim EC; Lee CH; Kwon IK
    Carbohydr Polym; 2014 Oct; 111():530-7. PubMed ID: 25037384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.