These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 27267620)

  • 1. Visualizing and Clustering Protein Similarity Networks: Sequences, Structures, and Functions.
    Mai TL; Hu GM; Chen CM
    J Proteome Res; 2016 Jul; 15(7):2123-31. PubMed ID: 27267620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clustering and visualizing similarity networks of membrane proteins.
    Hu GM; Mai TL; Chen CM
    Proteins; 2015 Aug; 83(8):1450-61. PubMed ID: 26011797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of topological clustering within protein networks using edge metrics that evaluate full sequence, full structure, and active site microenvironment similarity.
    Leuthaeuser JB; Knutson ST; Kumar K; Babbitt PC; Fetrow JS
    Protein Sci; 2015 Sep; 24(9):1423-39. PubMed ID: 26073648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A similarity network approach for the analysis and comparison of protein sequence/structure sets.
    Valavanis I; Spyrou G; Nikita K
    J Biomed Inform; 2010 Apr; 43(2):257-67. PubMed ID: 20097308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores.
    Wilson CA; Kreychman J; Gerstein M
    J Mol Biol; 2000 Mar; 297(1):233-49. PubMed ID: 10704319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular evolution of protein conformational changes revealed by a network of evolutionarily coupled residues.
    Jeon J; Nam HJ; Choi YS; Yang JS; Hwang J; Kim S
    Mol Biol Evol; 2011 Sep; 28(9):2675-85. PubMed ID: 21470969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection of a representative set of structures from Brookhaven Protein Data Bank.
    Boberg J; Salakoski T; Vihinen M
    Proteins; 1992 Oct; 14(2):265-76. PubMed ID: 1409573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating multi-attribute similarity networks for robust representation of the protein space.
    Camoglu O; Can T; Singh AK
    Bioinformatics; 2006 Jul; 22(13):1585-92. PubMed ID: 16595556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revealing Unexplored Sequence-Function Space Using Sequence Similarity Networks.
    Copp JN; Akiva E; Babbitt PC; Tokuriki N
    Biochemistry; 2018 Aug; 57(31):4651-4662. PubMed ID: 30052428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustering protein sequences with a novel metric transformed from sequence similarity scores and sequence alignments with neural networks.
    Ma Q; Chirn GW; Cai R; Szustakowski JD; Nirmala NR
    BMC Bioinformatics; 2005 Oct; 6():242. PubMed ID: 16202129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A strategy for large-scale comparison of evolutionary- and reaction-based classifications of enzyme function.
    Holliday GL; Brown SD; Mischel D; Polacco BJ; Babbitt PC
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 32449511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the evolutionary divergence of protein structures: the role of function change and function conservation.
    Pascual-García A; Abia D; Méndez R; Nido GS; Bastolla U
    Proteins; 2010 Jan; 78(1):181-96. PubMed ID: 19830831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of function in protein superfamilies, from a structural perspective.
    Todd AE; Orengo CA; Thornton JM
    J Mol Biol; 2001 Apr; 307(4):1113-43. PubMed ID: 11286560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FastaHerder2: Four Ways to Research Protein Function and Evolution with Clustering and Clustered Databases.
    Mier P; Andrade-Navarro MA
    J Comput Biol; 2016 Apr; 23(4):270-8. PubMed ID: 26828375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein sequence comparison based on the wavelet transform approach.
    de Trad CH; Fang Q; Cosic I
    Protein Eng; 2002 Mar; 15(3):193-203. PubMed ID: 11932490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering of domains of functionally related enzymes in the interaction database PRECISE by the generation of primary sequence patterns.
    Landon MR; Lancia DR; Clodfelter KH; Vajda S
    J Mol Graph Model; 2006 May; 24(6):426-33. PubMed ID: 16221553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Common Structural Core of Three-Dozen Residues Reveals Intersuperfamily Relationships.
    Mönttinen HA; Ravantti JJ; Poranen MM
    Mol Biol Evol; 2016 Jul; 33(7):1697-710. PubMed ID: 26931141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting functional family of novel enzymes irrespective of sequence similarity: a statistical learning approach.
    Han LY; Cai CZ; Ji ZL; Cao ZW; Cui J; Chen YZ
    Nucleic Acids Res; 2004; 32(21):6437-44. PubMed ID: 15585667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between protein structure and function: a comprehensive survey with application to the yeast genome.
    Hegyi H; Gerstein M
    J Mol Biol; 1999 Apr; 288(1):147-64. PubMed ID: 10329133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Property eXplorer: a novel approach to visualizing SAR using tree-maps and heatmaps.
    Kibbey C; Calvet A
    J Chem Inf Model; 2005; 45(2):523-32. PubMed ID: 15807518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.