These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 27267656)
1. Preparation of Prussian Blue Submicron Particles with a Pore Structure by Two-Step Optimization for Na-Ion Battery Cathodes. Chen R; Huang Y; Xie M; Zhang Q; Zhang X; Li L; Wu F ACS Appl Mater Interfaces; 2016 Jun; 8(25):16078-86. PubMed ID: 27267656 [TBL] [Abstract][Full Text] [Related]
2. Chemical Inhibition Method to Synthesize Highly Crystalline Prussian Blue Analogs for Sodium-Ion Battery Cathodes. Chen R; Huang Y; Xie M; Wang Z; Ye Y; Li L; Wu F ACS Appl Mater Interfaces; 2016 Nov; 8(46):31669-31676. PubMed ID: 27797476 [TBL] [Abstract][Full Text] [Related]
3. A Chemical Precipitation Method Preparing Hollow-Core-Shell Heterostructures Based on the Prussian Blue Analogs as Cathode for Sodium-Ion Batteries. Huang Y; Xie M; Wang Z; Jiang Y; Yao Y; Li S; Li Z; Li L; Wu F; Chen R Small; 2018 Jul; 14(28):e1801246. PubMed ID: 29882323 [TBL] [Abstract][Full Text] [Related]
4. High Crystalline Prussian White Nanocubes as a Promising Cathode for Sodium-ion Batteries. Li C; Zang R; Li P; Man Z; Wang S; Li X; Wu Y; Liu S; Wang G Chem Asian J; 2018 Feb; 13(3):342-349. PubMed ID: 29281173 [TBL] [Abstract][Full Text] [Related]
5. Iron-Vanadium Incorporated Ferrocyanides as Potential Cathode Materials for Application in Sodium-Ion Batteries. Nguyen TP; Kim IT Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984928 [TBL] [Abstract][Full Text] [Related]
6. A Heterostructure Coupling of Bioinspired, Adhesive Polydopamine, and Porous Prussian Blue Nanocubics as Cathode for High-Performance Sodium-Ion Battery. Liu Y; He D; Cheng Y; Li L; Lu Z; Liang R; Fan Y; Qiao Y; Chou S Small; 2020 Mar; 16(11):e1906946. PubMed ID: 32068965 [TBL] [Abstract][Full Text] [Related]
7. Polypyrrole-Modified Prussian Blue Cathode Material for Potassium Ion Batteries via In Situ Polymerization Coating. Xue Q; Li L; Huang Y; Huang R; Wu F; Chen R ACS Appl Mater Interfaces; 2019 Jun; 11(25):22339-22345. PubMed ID: 31149796 [TBL] [Abstract][Full Text] [Related]
8. High-Performance Fe-Based Prussian Blue Cathode Material for Enhancing the Activity of Low-Spin Fe by Cu Doping. Chen ZY; Fu XY; Zhang LL; Yan B; Yang XL ACS Appl Mater Interfaces; 2022 Feb; 14(4):5506-5513. PubMed ID: 35072463 [TBL] [Abstract][Full Text] [Related]
9. Highly Crystallized Na₂CoFe(CN)₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. Wu X; Wu C; Wei C; Hu L; Qian J; Cao Y; Ai X; Wang J; Yang H ACS Appl Mater Interfaces; 2016 Mar; 8(8):5393-9. PubMed ID: 26849278 [TBL] [Abstract][Full Text] [Related]
10. Acid-Assisted Ball Mill Synthesis of Carboxyl-Functional-Group-Modified Prussian Blue as Sodium-Ion Battery Cathode. Luo Y; Peng J; Yin S; Xue L; Yan Y Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457998 [TBL] [Abstract][Full Text] [Related]
11. Role of Acid in Tailoring Prussian Blue as Cathode for High-Performance Sodium-Ion Battery. Liu Y; Wei G; Ma M; Qiao Y Chemistry; 2017 Nov; 23(63):15991-15996. PubMed ID: 28885739 [TBL] [Abstract][Full Text] [Related]
12. Co-intercalation of Mg(2+) and Na(+) in Na(0.69)Fe2(CN)6 as a High-Voltage Cathode for Magnesium Batteries. Kim DM; Kim Y; Arumugam D; Woo SW; Jo YN; Park MS; Kim YJ; Choi NS; Lee KT ACS Appl Mater Interfaces; 2016 Apr; 8(13):8554-60. PubMed ID: 26967192 [TBL] [Abstract][Full Text] [Related]
13. Preparation of Low-Defect Manganese-Based Prussian Blue Cathode Materials with Cubic Structure for Sodium-Ion Batteries via Coprecipitation Method. Dong X; Wang H; Wang J; Wang Q; Wang H; Hao W; Lu F Molecules; 2023 Oct; 28(21):. PubMed ID: 37959684 [TBL] [Abstract][Full Text] [Related]
14. Prussian blue: a new framework of electrode materials for sodium batteries. Lu Y; Wang L; Cheng J; Goodenough JB Chem Commun (Camb); 2012 Jul; 48(52):6544-6. PubMed ID: 22622269 [TBL] [Abstract][Full Text] [Related]
15. Na Xu CM; Peng J; Liu XH; Lai WH; He XX; Yang Z; Wang JZ; Qiao Y; Li L; Chou SL Small Methods; 2022 Aug; 6(8):e2200404. PubMed ID: 35730654 [TBL] [Abstract][Full Text] [Related]
16. Continuous Conductive Networks Built by Prussian Blue Cubes and Mesoporous Carbon Lead to Enhanced Sodium-Ion Storage Performances. Wang Z; Huang Y; Chu D; Li C; Zhang Y; Wu F; Li L; Xie M; Huang J; Chen R ACS Appl Mater Interfaces; 2021 Aug; 13(32):38202-38212. PubMed ID: 34342988 [TBL] [Abstract][Full Text] [Related]
17. Vacancies-regulated Prussian Blue Analogues through Precipitation Conversion for Cathodes in Sodium-ion Batteries with Energy Densities over 500 Wh/kg. Liu J; Wang Y; Jiang N; Wen B; Yang C; Liu Y Angew Chem Int Ed Engl; 2024 Sep; 63(39):e202400214. PubMed ID: 38299760 [TBL] [Abstract][Full Text] [Related]
18. Defect-Free Prussian Blue Analogue as Zero-Strain Cathode Material for High-Energy-Density Potassium-Ion Batteries. Zhou Q; Liu HK; Dou SX; Chong S ACS Nano; 2024 Mar; 18(9):7287-7297. PubMed ID: 38373205 [TBL] [Abstract][Full Text] [Related]
19. A Low-Strain Potassium-Rich Prussian Blue Analogue Cathode for High Power Potassium-Ion Batteries. Li L; Hu Z; Lu Y; Wang C; Zhang Q; Zhao S; Peng J; Zhang K; Chou SL; Chen J Angew Chem Int Ed Engl; 2021 Jun; 60(23):13050-13056. PubMed ID: 33780584 [TBL] [Abstract][Full Text] [Related]
20. Structure optimization of Prussian blue analogue cathode materials for advanced sodium ion batteries. Yang D; Xu J; Liao XZ; He YS; Liu H; Ma ZF Chem Commun (Camb); 2014 Nov; 50(87):13377-80. PubMed ID: 25233263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]