These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 27267803)
1. Prediction of Excited-State Energies and Singlet-Triplet Gaps of Charge-Transfer States Using a Restricted Open-Shell Kohn-Sham Approach. Hait D; Zhu T; McMahon DP; Van Voorhis T J Chem Theory Comput; 2016 Jul; 12(7):3353-9. PubMed ID: 27267803 [TBL] [Abstract][Full Text] [Related]
2. PCM-ROKS for the Description of Charge-Transfer States in Solution: Singlet-Triplet Gaps with Chemical Accuracy from Open-Shell Kohn-Sham Reaction-Field Calculations. Kunze L; Hansen A; Grimme S; Mewes JM J Phys Chem Lett; 2021 Sep; 12(35):8470-8480. PubMed ID: 34449230 [TBL] [Abstract][Full Text] [Related]
3. Dissecting the accountability of parameterized and parameter-free single-hybrid and double-hybrid functionals for photophysical properties of TADF-based OLEDs. Alipour M; Karimi N J Chem Phys; 2017 Jun; 146(23):234304. PubMed ID: 28641443 [TBL] [Abstract][Full Text] [Related]
4. Reliable Prediction with Tuned Range-Separated Functionals of the Singlet-Triplet Gap in Organic Emitters for Thermally Activated Delayed Fluorescence. Sun H; Zhong C; Brédas JL J Chem Theory Comput; 2015 Aug; 11(8):3851-8. PubMed ID: 26574466 [TBL] [Abstract][Full Text] [Related]
5. Benchmarking Charge-Transfer Excited States in TADF Emitters: ΔDFT Outperforms TD-DFT for Emission Energies. Froitzheim T; Kunze L; Grimme S; Herbert JM; Mewes JM J Phys Chem A; 2024 Aug; 128(30):6324-6335. PubMed ID: 39028862 [TBL] [Abstract][Full Text] [Related]
6. Theoretical rationalization of the singlet-triplet gap in OLEDs materials: impact of charge-transfer character. Moral M; Muccioli L; Son WJ; Olivier Y; Sancho-García JC J Chem Theory Comput; 2015 Jan; 11(1):168-77. PubMed ID: 26574215 [TBL] [Abstract][Full Text] [Related]
7. TD-DFT and Experimental Methods for Unraveling the Energy Distribution of Charge-Transfer Triplet/Singlet States of a TADF Molecule in a Frozen Matrix. Woo SJ; Kim JJ J Phys Chem A; 2021 Feb; 125(5):1234-1242. PubMed ID: 33517658 [TBL] [Abstract][Full Text] [Related]
8. Modeling TADF in organic emitters requires a careful consideration of the environment and going beyond the Franck-Condon approximation. Mewes JM Phys Chem Chem Phys; 2018 May; 20(18):12454-12469. PubMed ID: 29700532 [TBL] [Abstract][Full Text] [Related]
9. TADF Material Design: Photophysical Background and Case Studies Focusing on Cu Yersin H; Czerwieniec R; Shafikov MZ; Suleymanova AF Chemphyschem; 2017 Dec; 18(24):3508-3535. PubMed ID: 29083512 [TBL] [Abstract][Full Text] [Related]
10. Assessment of the Density-Fitted Second-Order Quasidegenerate Perturbation Theory for Transition Energies: Accurate Computations of Singlet-Triplet Gaps for Charge-Transfer Compounds. Servan SA; Ünal A; Hamarat B; Bozkaya U J Phys Chem A; 2020 Aug; 124(34):6889-6898. PubMed ID: 32786988 [TBL] [Abstract][Full Text] [Related]
12. Benchmarking DFT Functionals for Excited-State Calculations of Donor-Acceptor TADF Emitters: Insights on the Key Parameters Determining Reverse Inter-System Crossing. Hall D; Sancho-García JC; Pershin A; Beljonne D; Zysman-Colman E; Olivier Y J Phys Chem A; 2023 Jun; 127(21):4743-4757. PubMed ID: 37196185 [TBL] [Abstract][Full Text] [Related]
13. Highly Accurate Prediction of Core Spectra of Molecules at Density Functional Theory Cost: Attaining Sub-electronvolt Error from a Restricted Open-Shell Kohn-Sham Approach. Hait D; Head-Gordon M J Phys Chem Lett; 2020 Feb; 11(3):775-786. PubMed ID: 31917579 [TBL] [Abstract][Full Text] [Related]
14. How Parallel Are Excited State Potential Energy Surfaces from Time-Independent and Time-Dependent DFT? A BODIPY Dye Case Study. Komoto KT; Kowalczyk T J Phys Chem A; 2016 Oct; 120(41):8160-8168. PubMed ID: 27677341 [TBL] [Abstract][Full Text] [Related]
15. QM/MM Car-Parrinello molecular dynamics study of the solvent effects on the ground state and on the first excited singlet state of acetone in water. Röhrig UF; Frank I; Hutter J; Laio A; VandeVondele J; Rothlisberger U Chemphyschem; 2003 Nov; 4(11):1177-82. PubMed ID: 14652995 [TBL] [Abstract][Full Text] [Related]
16. Excitation energies and Stokes shifts from a restricted open-shell Kohn-Sham approach. Kowalczyk T; Tsuchimochi T; Chen PT; Top L; Van Voorhis T J Chem Phys; 2013 Apr; 138(16):164101. PubMed ID: 23635105 [TBL] [Abstract][Full Text] [Related]
17. Testing Noncollinear Spin-Flip, Collinear Spin-Flip, and Conventional Time-Dependent Density Functional Theory for Predicting Electronic Excitation Energies of Closed-Shell Atoms. Xu X; Yang KR; Truhlar DG J Chem Theory Comput; 2014 May; 10(5):2070-84. PubMed ID: 26580534 [TBL] [Abstract][Full Text] [Related]
18. Accurate Treatment of Charge-Transfer Excitations and Thermally Activated Delayed Fluorescence Using the Particle-Particle Random Phase Approximation. Al-Saadon R; Sutton C; Yang W J Chem Theory Comput; 2018 Jun; 14(6):3196-3204. PubMed ID: 29772183 [TBL] [Abstract][Full Text] [Related]
19. Impact of Dielectric Constant on the Singlet-Triplet Gap in Thermally Activated Delayed Fluorescence Materials. Sun H; Hu Z; Zhong C; Chen X; Sun Z; Brédas JL J Phys Chem Lett; 2017 Jun; 8(11):2393-2398. PubMed ID: 28453937 [TBL] [Abstract][Full Text] [Related]
20. Either Accurate Singlet-Triplet Gaps or Excited-State Structures: Testing and Understanding the Performance of TD-DFT for TADF Emitters. Froitzheim T; Grimme S; Mewes JM J Chem Theory Comput; 2022 Dec; 18(12):7702-7713. PubMed ID: 36409831 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]