These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 27268233)

  • 1. Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials.
    Boerigter C; Aslam U; Linic S
    ACS Nano; 2016 Jun; 10(6):6108-15. PubMed ID: 27268233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional Damping of Plasmons at Metal-Semiconductor Interfaces.
    Liu G; Lou Y; Zhao Y; Burda C
    Acc Chem Res; 2022 Jul; 55(13):1845-1856. PubMed ID: 35696292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive surface-enhanced Raman scattering of TiO
    Zhao X; Zhang W; Peng C; Liang Y; Wang W
    J Colloid Interface Sci; 2017 Dec; 507():370-377. PubMed ID: 28806656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Requirement for Extracting Energetic Charge Carriers from Plasmonic Metal Nanoparticles to Perform Electron-Transfer Reactions.
    Rao VG; Aslam U; Linic S
    J Am Chem Soc; 2019 Jan; 141(1):643-647. PubMed ID: 30537807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Hot-Carrier-Mediated Tunable Photochemical Reactions.
    Zhang Y; Nelson T; Tretiak S; Guo H; Schatz GC
    ACS Nano; 2018 Aug; 12(8):8415-8422. PubMed ID: 30001116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-induced hot electron transfer in AgNW@TiO
    Cheng J; Li Y; Plissonneau M; Li J; Li J; Chen R; Tang Z; Pautrot-d'Alençon L; He T; Tréguer-Delapierre M; Delville MH
    Sci Rep; 2018 Sep; 8(1):14136. PubMed ID: 30237426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Confined Hot Electron Relaxation at the Molecular Heterointerface of the Size-Selected Plasmonic Noble Metal Nanocluster and Layered C
    Shibuta M; Yamamoto K; Ohta T; Inoue T; Mizoguchi K; Nakaya M; Eguchi T; Nakajima A
    ACS Nano; 2021 Jan; 15(1):1199-1209. PubMed ID: 33411503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hot Charge Carrier Transmission from Plasmonic Nanostructures.
    Christopher P; Moskovits M
    Annu Rev Phys Chem; 2017 May; 68():379-398. PubMed ID: 28301756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces.
    Yu Y; Wijesekara KD; Xi X; Willets KA
    ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis.
    Aslam U; Chavez S; Linic S
    Nat Nanotechnol; 2017 Oct; 12(10):1000-1005. PubMed ID: 28737751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic hole ejection involved in plasmon-induced charge separation.
    Tatsuma T; Nishi H
    Nanoscale Horiz; 2020 Mar; 5(4):597-606. PubMed ID: 32226974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progressive Design of Plasmonic Metal-Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis-NIR-Driven Solar-to-Chemical Conversion.
    Han C; Quan Q; Chen HM; Sun Y; Xu YJ
    Small; 2017 Apr; 13(14):. PubMed ID: 28151576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-dependent picture of the charge-transfer contributions to surface enhanced Raman spectroscopy.
    Lombardi JR; Birke RL
    J Chem Phys; 2007 Jun; 126(24):244709. PubMed ID: 17614579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis.
    Boerigter C; Campana R; Morabito M; Linic S
    Nat Commun; 2016 Jan; 7():10545. PubMed ID: 26817619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor.
    Cushing SK; Li J; Meng F; Senty TR; Suri S; Zhi M; Li M; Bristow AD; Wu N
    J Am Chem Soc; 2012 Sep; 134(36):15033-41. PubMed ID: 22891916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How Does a Plasmon-Induced Hot Charge Carrier Break a C-C Bond?
    Huh H; Trinh HD; Lee D; Yoon S
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24715-24724. PubMed ID: 31192584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S; Christopher P; Xin H; Marimuthu A
    Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic Combination of Charge Carriers and Energy-Transfer Processes in Plasmonic Photocatalysis.
    Negrín-Montecelo Y; Kong XT; Besteiro LV; Carbó-Argibay E; Wang ZM; Pérez-Lorenzo M; Govorov AO; Comesaña-Hermo M; Correa-Duarte MA
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35734-35744. PubMed ID: 35913208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.