BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27268402)

  • 1. In Situ Analysis of the Growth and Dielectric Properties of Organic Self-Assembled Monolayers: A Way To Tailor Organic Layers for Electronic Applications.
    Markov A; Greben K; Mayer D; Offenhäusser A; Wördenweber R
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16451-6. PubMed ID: 27268402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural investigations of self-assembled monolayers for organic electronics: results from X-ray reflectivity.
    Khassanov A; Steinrück HG; Schmaltz T; Magerl A; Halik M
    Acc Chem Res; 2015 Jul; 48(7):1901-8. PubMed ID: 26072927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vapor-Phase Deposition and Electronic Characterization of 3-Aminopropyltriethoxysilane Self-Assembled Monolayers on Silicon Dioxide.
    Yuan X; Wolf N; Mayer D; Offenha Usser A; Wo Rdenweber R
    Langmuir; 2019 Jun; 35(25):8183-8190. PubMed ID: 31144819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled Engineering of Oxide Surfaces for Bioelectronics Applications Using Organic Mixed Monolayers.
    Markov A; Wolf N; Yuan X; Mayer D; Maybeck V; Offenhäusser A; Wördenweber R
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29265-29272. PubMed ID: 28783310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monolayers and multilayers of conjugated polymers as nanosized electronic components.
    Zotti G; Vercelli B; Berlin A
    Acc Chem Res; 2008 Sep; 41(9):1098-109. PubMed ID: 18570441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential of molecular self-assembled monolayers in organic electronic devices.
    Halik M; Hirsch A
    Adv Mater; 2011 Jun; 23(22-23):2689-95. PubMed ID: 21823250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self assembled monolayers on silicon for molecular electronics.
    Aswal DK; Lenfant S; Guerin D; Yakhmi JV; Vuillaume D
    Anal Chim Acta; 2006 May; 568(1-2):84-108. PubMed ID: 17761249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-metal deposition on self assembled monolayer for making top contacts in molecular electronic devices.
    Seitz O; Dai M; Aguirre-Tostado FS; Wallace RM; Chabal YJ
    J Am Chem Soc; 2009 Dec; 131(50):18159-67. PubMed ID: 19924992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled monolayers in organic electronics.
    Casalini S; Bortolotti CA; Leonardi F; Biscarini F
    Chem Soc Rev; 2017 Jan; 46(1):40-71. PubMed ID: 27722675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interface energetics of self-assembled monolayers on metals.
    Heimel G; Romaner L; Zojer E; Bredas JL
    Acc Chem Res; 2008 Jun; 41(6):721-9. PubMed ID: 18507404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembled Monolayers: Versatile Uses in Electronic Devices from Gate Dielectrics, Dopants, and Biosensing Linkers.
    Kim S; Yoo H
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34067620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Functionalization of Platinum Electrodes with APTES for Bioelectronic Applications.
    Wolf NR; Yuan X; Hassani H; Milos F; Mayer D; Breuer U; Offenhäusser A; Wördenweber R
    ACS Appl Bio Mater; 2020 Oct; 3(10):7113-7121. PubMed ID: 35019371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembled Monolayers as Patterning Tool for Organic Electronic Devices.
    Schmaltz T; Sforazzini G; Reichert T; Frauenrath H
    Adv Mater; 2017 May; 29(18):. PubMed ID: 28160336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers.
    Calhoun MF; Sanchez J; Olaya D; Gershenson ME; Podzorov V
    Nat Mater; 2008 Jan; 7(1):84-9. PubMed ID: 18026107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Work-Function Engineering of Graphene Electrodes by Self-Assembled Monolayers for High-Performance Organic Field-Effect Transistors.
    Park J; Lee WH; Huh S; Sim SH; Kim SB; Cho K; Hong BH; Kim KS
    J Phys Chem Lett; 2011 Apr; 2(8):841-5. PubMed ID: 26295616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of organic monolayers as protective and conductive bridges for nanometric surface-mount applications.
    Platzman I; Haick H; Tannenbaum R
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2585-93. PubMed ID: 20804143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ self-assembled organic interface layers for the controlled growth of oligothiophene thin films on ferroelectric Pb(Zr(0.2)Ti(0.8))O3.
    Milde P; Schönfelder R; Koitzsch A; Haubner K; Zerweck-Trogisch U; Jaehne E; Eng LM
    J Chem Phys; 2013 Dec; 139(21):214702. PubMed ID: 24320389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of different self-assembled monolayers on thin-film morphology: a combined DFT/MD simulation protocol.
    Alberga D; Mangiatordi GF; Motta A; Nicolotti O; Lattanzi G
    Langmuir; 2015 Oct; 31(39):10693-701. PubMed ID: 26367250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of Neuron Growth and Enhancing Cell-Chip Communication via Mixed SAMs.
    Markov A; Maybeck V; Wolf N; Mayer D; Offenhäusser A; Wördenweber R
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18507-18514. PubMed ID: 29763286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Structure and Disorder on the Charge Transport in Defined Self-Assembled Monolayers of Organic Semiconductors.
    Schmaltz T; Gothe B; Krause A; Leitherer S; Steinrück HG; Thoss M; Clark T; Halik M
    ACS Nano; 2017 Sep; 11(9):8747-8757. PubMed ID: 28813143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.