BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27268480)

  • 1. Physical equivalency of wild type and galactose α 1,3 galactose free porcine pericardium; a new source material for bioprosthetic heart valves.
    McGregor C; Byrne G; Rahmani B; Chisari E; Kyriakopoulou K; Burriesci G
    Acta Biomater; 2016 Sep; 41():204-209. PubMed ID: 27268480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing immunoreactivity of porcine bioprosthetic heart valves by genetically-deleting three major glycan antigens, GGTA1/β4GalNT2/CMAH.
    Zhang R; Wang Y; Chen L; Wang R; Li C; Li X; Fang B; Ren X; Ruan M; Liu J; Xiong Q; Zhang L; Jin Y; Zhang M; Liu X; Li L; Chen Q; Pan D; Li R; Cooper DKC; Yang H; Dai Y
    Acta Biomater; 2018 May; 72():196-205. PubMed ID: 29631050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human antibody recognition of xenogeneic antigens (NeuGc and Gal) on porcine heart valves: could genetically modified pig heart valves reduce structural valve deterioration?
    Lee W; Long C; Ramsoondar J; Ayares D; Cooper DK; Manji RA; Hara H
    Xenotransplantation; 2016 Sep; 23(5):370-80. PubMed ID: 27511593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gal-knockout bioprostheses exhibit less immune stimulation compared to standard biological heart valves.
    McGregor CG; Kogelberg H; Vlasin M; Byrne GW
    J Heart Valve Dis; 2013 May; 22(3):383-90. PubMed ID: 24151765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alpha-Gal Inactivated Heart Valve Bioprostheses Exhibit an Anti-Calcification Propensity Similar to Knockout Tissues.
    Naso F; Stefanelli U; Buratto E; Lazzari G; Perota A; Galli C; Gandaglia A
    Tissue Eng Part A; 2017 Oct; 23(19-20):1181-1195. PubMed ID: 29053434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological Equivalence of GGTA-1 Glycosyltransferase Knockout and Standard Porcine Pericardial Tissue Using 90-Day Mitral Valve Implantation in Adolescent Sheep.
    McGregor C; Salmonsmith J; Burriesci G; Byrne G
    Cardiovasc Eng Technol; 2022 Jun; 13(3):363-372. PubMed ID: 34820778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Immune Responses and Calcification of Bioprostheses in the α1,3-Galactosyltransferase Knockout Mouse.
    Sung Jeong W; Jin Kim Y; Lim HG; Jung S; Ryul Lee J
    J Heart Valve Dis; 2016 Mar; 25(2):253-261. PubMed ID: 27989076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Durable Porcine Pericardial Surgical Bioprosthetic Heart Valve: a Proof of Concept.
    Rahmani B; McGregor C; Byrne G; Burriesci G
    J Cardiovasc Transl Res; 2019 Aug; 12(4):331-337. PubMed ID: 30756359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetically engineered sheep: A new paradigm for future preclinical testing of biological heart valves.
    McGregor CGA; Byrne GW; Fan Z; Davies CJ; Polejaeva IA
    J Thorac Cardiovasc Surg; 2023 Oct; 166(4):e142-e152. PubMed ID: 36914518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A universal strategy for the construction of polymer brush hybrid non-glutaraldehyde heart valves with robust anti-biological contamination performance and improved endothelialization potential.
    Yu T; Zheng C; Chen X; Pu H; Li G; Jiang Q; Wang Y; Guo Y
    Acta Biomater; 2023 Apr; 160():87-97. PubMed ID: 36812953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-crosslinked bioprosthetic heart valves prepared by glutaraldehyde crosslinked pericardium and poly-2-hydroxyethyl methacrylate exhibited improved antithrombogenicity and anticalcification properties.
    Huang X; Zheng C; Ding K; Zhang S; Lei Y; Wei Q; Yang L; Wang Y
    Acta Biomater; 2022 Dec; 154():244-258. PubMed ID: 36306983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radical polymerization-crosslinking method for improving extracellular matrix stability in bioprosthetic heart valves with reduced potential for calcification and inflammatory response.
    Guo G; Jin L; Jin W; Chen L; Lei Y; Wang Y
    Acta Biomater; 2018 Dec; 82():44-55. PubMed ID: 30326277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gal knockout pig pericardium: new source of material for heart valve bioprostheses.
    Lila N; McGregor CG; Carpentier S; Rancic J; Byrne GW; Carpentier A
    J Heart Lung Transplant; 2010 May; 29(5):538-43. PubMed ID: 20036160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elimination of alpha-gal xenoreactive epitope: alpha-galactosidase treatment of porcine heart valves.
    Choi SY; Jeong HJ; Lim HG; Park SS; Kim SH; Kim YJ
    J Heart Valve Dis; 2012 May; 21(3):387-97. PubMed ID: 22808845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprostheses.
    Naso F; Gandaglia A; Bottio T; Tarzia V; Nottle MB; d'Apice AJ; Cowan PJ; Cozzi E; Galli C; Lagutina I; Lazzari G; Iop L; Spina M; Gerosa G
    Xenotransplantation; 2013; 20(4):252-61. PubMed ID: 23865597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Search of the Ideal Valve: Optimizing Genetic Modifications to Prevent Bioprosthetic Degeneration.
    Smood B; Hara H; Cleveland DC; Cooper DKC
    Ann Thorac Surg; 2019 Aug; 108(2):624-635. PubMed ID: 30836101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac xenotransplantation technology provides materials for improved bioprosthetic heart valves.
    McGregor CG; Carpentier A; Lila N; Logan JS; Byrne GW
    J Thorac Cardiovasc Surg; 2011 Jan; 141(1):269-75. PubMed ID: 21168032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A versatile modification strategy for functional non-glutaraldehyde cross-linked bioprosthetic heart valves with enhanced anticoagulant, anticalcification and endothelialization properties.
    Yu T; Pu H; Chen X; Kong Q; Chen C; Li G; Jiang Q; Wang Y
    Acta Biomater; 2023 Apr; 160():45-58. PubMed ID: 36764592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A versatile drug-controlled release polymer brush hybrid non-glutaraldehyde bioprosthetic heart valves with enhanced anti-inflammatory, anticoagulant and anti-calcification properties, and superior mechanical performance.
    Yu T; Li G; Chen X; Kuang D; Jiang Q; Guo Y; Wang Y
    Biomaterials; 2023 May; 296():122070. PubMed ID: 36868031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in xenoreactive immune response and patterns of calcification of porcine and bovine tissues in α-Gal knock-out and wild-type mouse implantation models.
    Kim MS; Jeong S; Lim HG; Kim YJ
    Eur J Cardiothorac Surg; 2015 Sep; 48(3):392-9. PubMed ID: 25549993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.