These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27268482)

  • 1. Biohydrogen and carboxylic acids production from wheat straw hydrolysate.
    Chandolias K; Pardaev S; Taherzadeh MJ
    Bioresour Technol; 2016 Sep; 216():1093-7. PubMed ID: 27268482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of reactor configuration on biogas production from wheat straw hydrolysate.
    Kaparaju P; Serrano M; Angelidaki I
    Bioresour Technol; 2009 Dec; 100(24):6317-23. PubMed ID: 19647428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture.
    Kongjan P; O-Thong S; Kotay M; Min B; Angelidaki I
    Biotechnol Bioeng; 2010 Apr; 105(5):899-908. PubMed ID: 19998285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration.
    Kongjan P; Angelidaki I
    Bioresour Technol; 2010 Oct; 101(20):7789-96. PubMed ID: 20554199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept.
    Kaparaju P; Serrano M; Thomsen AB; Kongjan P; Angelidaki I
    Bioresour Technol; 2009 May; 100(9):2562-8. PubMed ID: 19135361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost.
    Fan YT; Zhang YH; Zhang SF; Hou HW; Ren BZ
    Bioresour Technol; 2006 Feb; 97(3):500-5. PubMed ID: 15905089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic digestion of wheat straw--performance of continuous solid-state digestion.
    Pohl M; Heeg K; Mumme J
    Bioresour Technol; 2013 Oct; 146():408-415. PubMed ID: 23954246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous biohydrogen production from waste bread by anaerobic sludge.
    Han W; Huang J; Zhao H; Li Y
    Bioresour Technol; 2016 Jul; 212():1-5. PubMed ID: 27065225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of biohydrogen production using a reduced pressure fermentation.
    Kisielewska M; Dębowski M; Zieliński M
    Bioprocess Biosyst Eng; 2015 Oct; 38(10):1925-33. PubMed ID: 26111633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate.
    Han W; Hu Y; Li S; Li F; Tang J
    Bioresour Technol; 2016 Oct; 218():589-94. PubMed ID: 27416509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biohydrogen production from a novel alkalophilic isolate Clostridium sp. IODB-O3.
    Patel AK; Debroy A; Sharma S; Saini R; Mathur A; Gupta R; Tuli DK
    Bioresour Technol; 2015 Jan; 175():291-7. PubMed ID: 25459835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of temperature and total solid content on biohydrogen production from dark fermentation of rice straw: Performance and microbial community characteristics.
    Chen H; Wu J; Huang R; Zhang W; He W; Deng Z; Han Y; Xiao B; Luo H; Qu W
    Chemosphere; 2022 Jan; 286(Pt 1):131655. PubMed ID: 34315083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium Thermoanaerobacter BG1L1 in a continuous immobilized reactor.
    Georgieva TI; Mikkelsen MJ; Ahring BK
    Appl Biochem Biotechnol; 2008 Mar; 145(1-3):99-110. PubMed ID: 18425616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-stage bioprocess for hydrogen and methane production from rice straw bioethanol residues.
    Cheng HH; Whang LM; Wu CW; Chung MC
    Bioresour Technol; 2012 Jun; 113():23-9. PubMed ID: 22290020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of first and second generation biofuels: fermentative hydrogen production from wheat grain and straw.
    Panagiotopoulos IA; Bakker RR; de Vrije T; Claassen PA; Koukios EG
    Bioresour Technol; 2013 Jan; 128():345-50. PubMed ID: 23196256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogas production from wheat straw in batch and UASB reactors: the roles of pretreatment and seaweed hydrolysate as a co-substrate.
    Nkemka VN; Murto M
    Bioresour Technol; 2013 Jan; 128():164-72. PubMed ID: 23196235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-consumption of glucose and xylose for organic acid production by Aspergillus carbonarius cultivated in wheat straw hydrolysate.
    Yang L; Lübeck M; Souroullas K; Lübeck PS
    World J Microbiol Biotechnol; 2016 Apr; 32(4):57. PubMed ID: 26925619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentative production of hydrogen from a wheat flour industry co-product.
    Hawkes FR; Forsey H; Premier GC; Dinsdale RM; Hawkes DL; Guwy AJ; Maddy J; Cherryman S; Shine J; Auty D
    Bioresour Technol; 2008 Jul; 99(11):5020-9. PubMed ID: 17964776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of bioenergy recovery processes treating organic residues from ethanol fermentation process.
    Juang CP; Whang LM; Cheng HH
    Bioresour Technol; 2011 May; 102(9):5394-9. PubMed ID: 21055919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Total solid content drives hydrogen production through microbial selection during thermophilic fermentation.
    Motte JC; Trably E; Hamelin J; Escudié R; Bonnafous A; Steyer JP; Bernet N; Delgenès JP; Dumas C
    Bioresour Technol; 2014 Aug; 166():610-5. PubMed ID: 24951274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.